TABLE OF CONTENTS

S.No DATE TOPIC PAGE
NO.
UNIT | OPERATING SYSTEM OVERVIEW
1 Computer System Overview 1
2 Basic Elements 6
3 Instruction Execution 9
4 Interrupts 9
5 Memory Hierarchy 10
6 Cache Memory 11
7 Direct Memory Access 11
8 Multiprocessor and Multicore Organizatio 12
9 Operating System OverviewODbjectives 15
and functions
10 Evolution of Operating System 16
11 Computer System Organization 20
12 Operating System Structure and Operatig 20
13 System Calls 22
14 System Programs 24
15 Operating System Generation and Syster 25
Boot
UNIT Il PROCESS MANAGEMENT
16 Processes Process Concept 26
17 Process Scheduling 27
18 Operations on Processes 30
19 Interprocess Communication 31
20 Threads- Overview 33
21 Multicore Programming 35
22 Multithreading Models 36
23 Windows 7- Thread and SMP Manageme 37
24 Process Synchronization 40
25 Critical Section Problem 42
26 Mutex Locks 44
27 Semaphores 45
28 Monitors 48
29 CPU Scheduling and Deadlocks 58
UNIT Il STORAGE MANAGEMENT
30 Main Memory 67
31 Contiguous Memory Allocation 68

32 Segmentation 70
33 Paging 75
34 32 and 64 bit architecture Examples : 83
Virtual Memory
35 Demand Paging 83
36 Page Replacement 86
37 Allocation 90
38 Thrashing 91
39 Allocating Kernel Memory 92
40 OS Examples 92
UNIT =1V I/O SYSTEMS
41 Mass Storage Structure - Overview 94
42 Disk Scheduling and Management 94
43 File System Storage 95
44 File Concepts 98
45 Directory and Disk Structure 101
46 Sharing and Protection 102
a7 File System ImplementationFile System
105
Structure
48 Directory Structure 106
49 Allocation Methods 110
50 Free Space Management 115
51 I/O Systems 115
UNIT -V CASE STUDY
52 Linux System- Basic Concepts 119
53 System Administratior Requirements for 121
Linux System Administrator
54 Setting up LINUX Multifunction Server 125
55 Domain Name System 127
56 Setting up Local Area Services 128
57 Virtualization— Basic Concepts 130
58 Setting up Xen , VMware on Linux Host 133
and Adding Guest OS
APPENDICES
A Glossary 135
B Question Bank 142
C Previous year University question papers 161

SYLLABUS

CS6401 OPERATING SYSTEMS
OBJECTIVES:
The student should be made to:

Study the basic concepts and functions of operating sgstem

Understand the structure and functions of OS.

Learn about Processes, Threads and Scheduling algarithms

Understand the principles of concurrency and Deadlocks.

Learn various memory management schemes.

Study I/0 management and File systems.

Learn the basics of Linux system and perform adminisgrdéisks on Linux Servers.

7 7 X/ R/ X/ K/ 7/
L XA X R X IR X I X S 4

UNIT | OPERATING SYSTEMS OVERVIEW 9

Computer System Overview-Basic Elements, Instructiéxecution, Interrupts, Memory
Hierarchy, Cache Memory, Direct Memory Access, Multigssor and Multicore Organization.
Operating system overview-objectives and functiongliion of Operating System.- Computer
System Organization- Operating System Structure andrdlipns- System Calls, System
Programs, OS Generation and System Boot.

UNIT Il PROCESS MANAGEMENT 9

Processes-Process Concept, Process Scheduling, Operadbn Processes, Interprocess
Communication; Threads- Overview, Multicore Programminilultithreading Models;
Windows 7 - Thread and SMP Management. Process Synchromizairitical Section Problem,
Mutex Locks, Semophores, Monitors; CPU Scheduling and Delesllo

UNIT Il STORAGE MANAGEMENT 9

Main Memory-Contiguous Memory Allocation, SegmentatiBaging, 32 and 64 bit architecture
Examples; Virtual Memory- Demand Paging, Page Replanemallocation, Thrashing;
Allocating Kernel Memory, OS Examples.

UNIT IV I/O SYSTEMS 9

Mass Storage Structure- Overview, Disk Scheduling andagement; File System Storage-File
Concepts, Directory and Disk Structure, Sharing andetion; File System Implementation-

File System Structure, Directory Structure, Allocatiorthbds, Free Space Management, I/O
Systems.

UNIT V CASE STUDY 9

Linux System- Basic Concepts;System AdministratiomR@ments for Linux System
Administrator, Setting up a LINUX Multifunction Servebomain Name System, Setting Up

Local Network Services; Virtualization- Basic Conceptsttiag Up Xen,VMware on Linux
Host and Adding Guest OS.

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, the student should be able to:

Design various Scheduling algorithms.

Apply the principles of concurrency.

Design deadlock, prevention and avoidance algorithms.
Compare and contrast various memory management schemes.
Design and Implement a prototype file systems.

Perform administrative tasks on Linux Servers.

X/ X/ K/ 7/ X/ 7
L XGRS X I X

TEXT BOOK:

1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System Concepts”, 9t
Edition, John Wiley and Sons Inc., 2012.

REFERENCES:

1. William Stallings, “Operating Systems — Internals and Bsign Principles”, 7th Edition,
Prentice Hall,2011.

2. Andrew S. Tanenbaum, “Modern Operating Systems”, Second Edition, Addison Wesley,
2001.

3. Charles Crowley, “Operating Systems: A Design-Oriented Approach”, Tata McGraw Hill
Education”, 1996.

4. D M Dhandhere, “Operating Systems: A Concept-Based Approach”, Second Edition, Tata
McGraw-Hill Education, 2007.

5. http://nptel.ac.in/

http://nptel.ac.in/

UNIT -1 OPERATING SYSTEMS OVERVIEW

Computer System Overview-Basic Elements, InstructiorExecution, Interrupts, Memory
Hierarchy, Cache Memory, Direct Memory Access, Multiprocesso and Multicore
Organization. Operating system overview-objectivesral functions, Evolution of Operating
System.- Computer System Organization-Operating Syste Structure and Operations-
System Calls, System Programs, OS Generation and System Boot

1. COMPUTER SYSTEM OVERVIEW:
What is an Operating System?
v' An operating system is a program that manages the computerare.

v It also provides a basis for application programa acts as an intermediary between
a user of a computer and the computer hardware.

v' The purpose of an operating system is to providerasronment in which a user can
execute programs.

Goals of an Operating System

v The primary goal of an operating system iasthio make the computer system
convenient to use.

v' The secondary goal is to use the computer hardware in aieeffimanner.
1.1 BASIC ELEMENTS OF A COMPUTER SYSTEM
v' An operating system is an important part of almost every ctenpystem.

A computer system can be divided roughly into four components

e

*

Hardware

Operating system

The application programs
Users

X/ 7 X/
L X GIR X X 4

» The hardware - the central processing unit (CPU), the memawyd the
Input/output (I/O) devices-provides the basic computespurces.

» The application programs- such as word processors, spreadsheets, compilers,
and web browsers- define the ways in which thessources are used to
solve the computing problems of the users.

» An operating systemis similar to a government. The OS simply provides an
environment within which other programs can do useful work.

Abstract view of the components of a computer system.
Operating system can be viewed as a resource allocator.

v' The OS acts as the manager of the resources (sueRlasime, memory space, file

1 = o |
S = : =

| I

T T T T LE e L o E 1 BT
g TS

Lissanr
3

SYEESITL Moo fEEhcmiior Do mime

caprmraliengy st

SO EFL BT P roiveio ro

storage space, I/O devices) and allocates thespecific programs and users as
necessary for tasks.

v" An operating system is a control program. It conttbés execution of user programs
to prevent errors and improper use of computer.

1.1.1 Mainframe Systems

Early computers were physically enormous machines run éreonsole.

The common input devices were card readers and tape drives.

The common output devices were line printers, tape drivesgcamdounches.

The user did not interact directly with the computer system

AN NN

Rather, the user prepared a job - which consistedeoptbgram, the data, and some
control information about the nature of the jobr{irol cards)-and submitted it to the
computer operator.

The job was usually in the form of punch cards.
The operating system in these early computers was fairjylesim

Its major task was to transfer control automatically fiame job to the next.

A U NI NN

The operating system was always resident in memory

Memory layout for a simple batch system.

aperating svatem

jokb 1

job 2

jolb 3

job 4

S13K
v A batch operating system, thus normally reads a stream obsepas.
v" When the job is complete its output is usually printed oneagdimter.

v' The definitive feature of batch system is the latlnteraction between the user and
the job while the job is executing.

v' Spooling is also used for processing data at remote sites.
1.1.2 Multiprogrammed Systems

v A pool of jobs on disk allows the OS to select alhijob to run next, to
increase CPU utilization.

v" Multiprogramming increases CPU utilization by orgamg jobs such that the CPU
always has one to execute.

v The idea is as follows: The operating system keepgeral jobs in memory
simultaneously. This set of jobs is a subset of jtes kept in the job pool. The
operating system picks and begins to execute one of theinothe memory.

Memory layout for a multiprogramming system.

opeaerating
system

user prograrm
area

1.1.3 Time-Sharing Systems

v Time sharing (or multitasking) is a
logical extension of multiprogramming.

v

v

The CPU executes multiple jobs by switching amongnthgut the switches occur so
frequently that the users can interact with each prograne\thsd running.

A time-shared operating system allows many usersshare the computer
simultaneously. Since each action or command itime-shared system tends to
be short, only a little CPU time is needed for each user.

As the system switches rapidly from one user ¢o tiext, each user is given the
impression that the entire computer system is dedicatdertaise, even though
it is being shared among many users.

1.1.4 Desktop Systems

v

v

v

As hardware costs have decreased, it has once agaaméecieasible to have a
computer system dedicated to a single user. Tlgses of computer systems are
usually referred to as personal computers(PCS).

They are microcomputers that are smaller and legsensive than mainframe
computers.

Operating systems for these computers have bendfited the development of
operating systems for mainframes in several ways.

1.1.5 Multiprocessor Systems

v

Multiprocessor systems (also known as paralgbtems or tightly coupled
systems) have more than one processor in closenanication, sharing the
computer bus, the clock, and sometimes memory and petiiplesiaes.

Multiprocessor systems have three main advantages.
* Increased throughput.

< Economy of scale.

% Increased reliablility.

If functions can be distributed properly among salvprocessors, then the failure of
one processor will not halt the system, only slowatvn. If we have ten processors
and one fails, then each of the remaining nine @mxm@s must pick up a share of the
work of the failed processor.

Thus, the entire system runs only 10 percent slovegher than failing altogether.
This ability to continue providing service proporial to the level of surviving
hardware is called graceful degradation. Systemigmes for graceful degradation
are also called fault tolerant.

Continued operation in the presence of fagurequires a mechanism to allow
the failure to be detected, diagnosed, and, if possible, tedrec

The most common multiple-processor systems nawge symmetric
multiprocessing (SMP), in whch each processor rums identical copy of the
operating system, and these copies communicate with oneemlr@st needed.

v' Some systems use asymmetric multiprocessing, in wdach processor is assigned a
specific task. A master processor controls the systemftltee processors either look
to the master for instruction or have predefined tasks.

v' This scheme defines a master-slave relatipnshhe master processor schedules
and allocates work to the slave processors.

1.1.6 Distributed Systems

v' In contrast to the tightly coupled systentse fprocessors do not share memory
or a clock. Instead , each processor has its own local memory.

v' The processors communicate with one anotherugfrovarious communication
lines, such as high speed buses or teleplioes. These systems are usually
referred to as loosely coupled systems, or distributéeinsys

Advantages of distributed systems
« Resource Sharing
« Computation speedup
< Reliability
s Communication
1.1.7 Real-Time Systems

v' Systems that control scientific experiments, ma&diimaging systems, industrial
control systems, and certain display systems are realsgstems.

v Some automobile-engine fuel-injection systems, hap@iance controllers, and
weapon systems are also real-time systems. A realsiystem has well-defined, fixed
time constraints.

Real-time systems come in two flavors: hard and soft.
v A hard real-time system guarantees that critical tasksreleted on time.

v' This goal requires that all delays in thestem be bounded, from the retrieval
of stored data to the time that it takes the opmgatystem to finish any request made
of it.

1.2 OPERATING SYSTEM COMPONENTS
There are eight major operating system components. diteey
% Process management
% Main-memory management

R

% File management

I/0-system management
Secondary-storage management
Networking

Protection system

Command-interpreter system

(i) Process Management

v

v

A process can be thought of as a program in execufidmatch job is a process. A
time shared user program is a process.

A process needs certain resources-including CPU timamary, files, and 1/O
devices-to accomplish its task.

A program by itself is not a process; a program ipasasive entity, such as the
contents of a file stored on disk, whereas a proisess active entity, with a program
counter specifying the next instruction to execute.

v A process is the unit of work in a system.

<

D N N NN

The operating system is responsible for fbkowing activities in connection
with process management:

Creating and deleting both user and system processes
Suspending and resuming processes

Providing mechanisms for process synchronization
Providing mechanisms for process communication

Providing mechanisms for deadlock handling

(i) Main — Memory Management

v

v

v

Main memory is a large array of words orteky ranging in size from
hundreds of thousands to billions. Each word or byte has its daress.

Main memory is a repository of quickly accessibéadshared by the CPU and I/O
devices.

To improve both the utilization of the CPU and tpeexd of the computer's response
to its users, we must keep several programs in memory.

The operating system is responsible for th#owiong activities in connection
with memory management:

Keeping track of which parts of memory are currently being asedoy whom.

(iii) File Management

v' File management is one of the most visiblmponents of an operating
system.

v The operating system is responsible for théowing activities in connection
with file management:

Creating and deleting files
Creating and deleting directories

Supporting primitives for manipulating files and dirette

D N N NN

Mapping files onto secondary storage
v' Backing up files on stable (nonvolatile) storage media
(iv) I/0O System management

v" One of the purposes of an operating system ishie the peculiarities of
specific hardware devices from the user. Thisis done using/Qreibsystem.

v' The I/O subsystem consists of a memory-manageroentponent that includes
buffering, caching, and spooling.

v' A general device-driver interface
v Dirivers for specific hardware devices
(v) Secondary storage management

v' Because main memory is too small to accommodatalatth and programs, and
because the data that it holds are lost when pavest, the computer system must
provide secondary storageback up main memory.

v The operating system is responsible for thiowing activities in connection
with disk management:

» Free-space management
= Storage allocation
= Disk Scheduling

(vi) Networking

v' A distributed system is a collection of premsrs that do not share memory,
peripheral devices, or a clock.

v' Instead, each processor has its own local menmend clock, and the
processors communicate with one another throagiows communication lines,
such as high-speed buses or networks.

v' The processors in the system are connedieslgh a communication network,
which can be configured in a number of different ways.

(vii) Protection System

v

v

v

Various processes must be protected from one arethelivities. For that purpose,
mechanisms ensure that the files, memory segmeéPU, and other resources
can be operated on by only those processes that ¢r@ned proper authorization
from the operating system.

Protection is any mechanism for controlling thecems of programs, processes, or
users to the resources defined by a computer system.

Protection can improve reliability by detectingelat errors at the interfaces between
component subsystems.

(viii) Command-Interpreter System

v

One of the most important systems programs for @nading system is the command
interpreter.

It is the interface between the user and the operating system

v Some operating systems include the commanerpireter in the kernel. Other

operating systems, such as MS-DOS and UNIX, treat thenaom interpreter as a
special program that is running when a job isated, or when a user first logs on
(on time-sharing systems).

v' Many commands are given to the operating system by catateiments.

v" When a new job is started in a batch system, or vehaser logs on to a time-

shared system, a program that reads and interpoetsot statements is executed
automatically.

This program is sometimes called the contest interpreter othe command-
line interpreter, and is often known as the shell.

1.3 BASIC ELEMENTS

1.3.1 Main Memory

e referred to as real memory or primary memory

e volatile

1.3.2 I/0O modules

e secondary memory devices
e communications equipment

e terminals

1.3.3 System bus

e communication among processors, memory, andl/O modules.
1.4 INTERRUPTS

v' An interrupt is a signal from a device attached tmmputer or from a program within
the computer that causes the main program thatatgsethe computer (the operating
system) to stop and figure out what to do next. Alnatispersonal (or larger) computers
today are interrupt-driven - that is, they start dowae list of computer instruction s in
one program (perhaps an application such as a warckgsor) and keep running the
instructions until either (A) they can't go any het or (B) an interrupt signal is sensed.
Basically, a single computer can perform only onmgoter instruction at a time. But,
because it can be interrupted, it can take turnghich programs or sets of instructions
that it performs. This is known as multitasking. lflows the user to do a number of
different things at the same time. The computer Bintpkes turns managing the
programs that the user effectively starts. Of couise computer operates at speeds that
make it seem as though all of the user's taskbeairg performed at the same time. (The
computer's operating system is good at using Igases in operations and user thinks
time to work on other programs.)

v' An operating system usually has some code that lisdcan interrupt handler. The
interrupt handler prioritizes the interrupts angesathem in a queue if more than one is
waiting to be handled. The operating system has anbithe program, sometimes called
a scheduler that figures out which program to give controéia.

v' In general, there are hardware interrupts and softivdeerupts. A hardware interrupt
occurs, for example, when an 1/O operation is complsteth as reading some data into
the computer from a tape drive. A software interruquiuos when an application program
terminates or requests certain services from tleeatipg system. In a personal computer,
a hardware interrupt request (IRQ) has a value agedowith it that associates it with a
particular device.

1.5 MEMORY HIERARCHY

Memory is categorized int@olatile and nonvolatile memories with the former requiring
constant power ON of the system to maintain data storage.

Furthermore, a typical computer system provideseaahthy of different times of memories for
data storage.

Computer Memory Hierarchy
vl {5 .-"'r '\'..._..- g i

1.5.1 Different levels of the memory hierarchy

v' Cache (MB): Cache is the fastest accessible memory of a compystem. It's access
speed is in the order of a few nanoseconds. It iatN®land expensive, so the typical
cache size is in the order of megabytes.

v' Main memory (GB): Main memory is arguably the most used memory. When
discussing computer algorithms such as quick satgnced binary sorted trees, or fast
Fourier transform, one typically assumes that tger&hm operates on data stored in the
main memory. The main memory is reasonably fast, &itbess speed around 100
nanoseconds. It also offers larger capacity at arleast. Typical main memory is in the
order of 10 GB. However, the main memory is volatile.

v' Secondary storage (TB):Secondary storage refers to nonvolatile data stoumgfs that
are external to the computer system. Hard drivessatid state drives are examples of
secondary storage. They offer very large storagaaigpin the order of terabytes at very
low cost. Therefore, database servers typically have an@rsgondary storage devices
with data stored distributed and redundantly actiesse devices. Despite the continuous
improvements in access speed of hard drives, seporstiarage devices are several
magnitudes slower than main memory. Modern hardedrivave access speed in the
order of a few milliseconds.

v' Tertiary storage (PB): Tertiary storage refers storage designed for thepqae data
backup. Examples of tertiary storage devices are thpves are robotic driven disk
arrays. They are capable of petabyte range stobagdave very slow access speed with
data access latency in seconds or minutes.

1.6 CACHE MEMORY

v' Cache (pronounced cash)memory is extremely fast memory that is built irdo
compuer’s central processing unit (CPU), or located next to it on a separate chip. The
CPU uses cache memory to store instructions thatrepeatedly required to run
programs, improving overall system speed. The adganté cache memory is that the
CPU doesiot have to use the motherboard’s system bus for data transfer. Whenever data
must be passed through the system bus, the datafaraspeed slows to the

motherboard’s capability. The CPU can process data much faster by avoiding the
bottleneck created by the system bus.

v' As it happens, once most programs are open and ginthi@y use very few resources.
When these resources are kept in cache, programsoparate more quickly and
efficiently. All else being equal, cache is so effeetin system performance that a
computer running a fast CPU with little cache canehlawer benchmarks than a system
running a somewhat slower CPU with more cache. CacHeibta the CPU itself is
referred to as Level 1 (L1) cache. Cache that resitlea separate chip next to the CPU is
called Level 2 (L2) cache. Some CPUs have both L1l@ncache built-in and designate
the separate cache chip as Level 3 (L3) cache.

v Cache that is built into the CPU is faster than sgtpacache, running at the speed of the
microprocessor itself. However, separate cache isratiljhly twice as fast as Random
Access Memory (RAM). Cache is more expensive than RBUM |t is well worth getting
a CPU and motherboard with built-in cache in order to maxisyséem performance.

Block Transfer

Word Transfer (*_’_\
—~A——

CPU ; Cache | i Main Memory

1.7 DIRECT MEMORY ACCESS

v' Direct Memory Access (DMA) is a capability provided by some computer bus
architectures that allows data to be sent directdynfan attached device (such as a disk
drive) to the memory on the computer's motherbo@ng microprocessor is freed from
involvement with the data transfer, thus speeding up ovaalputer operation.

v' Without DMA, when the CPU is using programmed input/attyt is typically fully
occupied for the entire duration of the read orevaperation, and is thus unavailable to
perform other work. With DMA, the CPU initiates the triams does other operations
while the transfer is in progress, and receives terrupt from the DMA controller when
the operation is done.

Disk Drive
CFPU hMemory controller

—-— Buffer

DkAA registers

Count 1T 11— hAemory address
1=} — Count

System bus

v This feature is useful any time the CPU cannot kgepvith the rate of data transfer, or
where the CPU needs to perform useful work while waitonga relatively slow 1/0O data

transfer. Many hardware systems use DMA, including digike controllers, graphics
cards, network cards and sound cards.

v DMA is also used for intra-chip data transfer in matire processors. Computers that
have DMA channels can transfer data to and from dewath much less CPU overhead
than computers without DMA channels. Similarly, a pssoeg element inside a multi-
core processor can transfer data to and from tal lmemory without occupying its
processor time, allowing computation and data transferciepd in parallel.

1.7.1 Modes of operation
1.7.1.1Burst mode

v" An entire block of data is transferred in one camtigs sequence. Once the DMA
controller is granted access to the system bus®PU, it transfers all bytes of
data in the data block before releasing controthef system buses back to the
CPU, but renders the CPU inactive for relatively Ipagiods of time. The mode
is also called "Block Transfer Mode". It is also used to stopeaessary data.

1.7.1.2 Cycle stealing mode

v' The cycle stealing mode is used in systems in wiieh CPU should not be
disabled for the length of time needed for burst transferesod

v In the cycle stealing mode, the DMA controller obtaigsess to the system bus
the same way as in burst mode, using BR (Bus Reqaadt)BG (Bus Grant)
signals, which are the two signals controlling thieiface between the CPU and
the DMA controller.

v' However, in cycle stealing mode, after one byte of ttatasfer, the control of the
system bus is deasserted to the CPU via BG.

1.7.1.3 Transparent mode

v' The transparent mode takes the most time to traadiock of data, yet it is also
the most efficient mode in terms of overall systperformance. The DMA
controller only transfers data when the CPU is periog operations that do not
use the system buses.

v It is the primary advantage of the transparent mibd¢ the CPU never stops
executing its programs and the DMA transfer is freetarms of time. The
disadvantage of the transparent mode is that théwaae needs to determine
when the CPU is not using the system buses, which can be complex.

1.8 MULTIPROCESSOR AND MULTICORE ORGANIZATION

Multiprocessor Operating System refers to the uséwof or more central processing
units (CPU) within a single computer system. Thesdtipbet CPUs are in a close
communication sharing the computer bus, memory dhdr@eripheral devices. These
systems are referred as tightly coupled systems.

CPU 1 - - Main Memory <+ > ChPu 2
Yy -~
F
o > o o
Processors Processors
F
r h 4
1o o
Units Units

Fig 1.8 Multiprocessor Organization

Multiprocessing system is based on the symmetriltipnaocessing model, in which each

processor runs an identical copy of operating sysied these copies communicate with
each other. In this system processor is assignepeeific task. A master processor
controls the system. This scheme defines a master-slatienshap.

These systems can save money in compare to simgtegsor systems because the
processors can share peripherals, power suppliesthrd devices. The main advantage
of multiprocessor system is to get more work dona @&hmorter period of time. Moreover,
multiprocessor systems prove more reliable in theasons of failure of one processor.
In this situation, the system with multiprocessor wak halt the system; it will only slow

it down.

In order to employ multiprocessing operating systffiectively, the computer system
must have the followings:

1.8.1 Motherboard Support:

A motherboard capable of handling multiple processbhis means additional sockets or

slots for the extra chips and a chipset capable of handngtittiprocessing arrangement.

1.8.2 Processor Support:

v

v

Processors those are capable of being used in a multipreresstem.

The whole task of multiprocessing is managed byogmerating system, which allocates
different tasks to be performed by the various processane igystem.

Multiprocessor system supports the processes tinrparallel. Parallel processing is the
ability of the CPU to simultaneously process incagnijpbs. This becomes most
important in computer system, as the CPU dividescaamdjuers the jobs. Generally the

parallel processing is used in the fields likefaitil intelligence and expert system,
image processing, weather forecasting etc.

v" In a multiprocessor system, the dynamically sharifgesources among the various
processors may cause therefore, a potential boteddnere are three main sources of
contention that can be found in a multiprocessor operagsgm:

1.8.2.1 Locking system:

7

¢ In order to provide safe access to the resourc®dtamong multiple processors,
they need to be protected by locking scheme. Thegser of a locking is to
serialize accesses to the protected resource bypleuprocessors. Undisciplined
use of locking can severely degrade the performance ofsyste

% This form of contention can be reduced by usingilog scheme, avoiding long
critical sections, replacing locks with lock-free @lighms, or, whenever possible,
avoiding sharing altogether.

1.8.2.2 Shared data:

7

% The continuous accesses to the shared data itemsiltiple processors (with one
or more of them with data write) are serialized by tiache coherence protocol.
Even in a moderate-scale system, serialization dedag have significant impact
on the system performance.

% In addition, bursts of cache coherence traffic sdatuthe memory bus or the
interconnection network, which also slows down therergystem. This form of
contention can be eliminated by either avoidingrisigaor, when this is not
possible, by using replication techniques to redbeegate of write accesses to the
shared data.

1.8.2.3 False sharing:

% This form of contention arises when unrelated d#&mns used by different
processors are located next to each other in thmameand, therefore, share a
single cache line: The effect of false sharindhes $ame as that of regular sharing
bouncing of the cache line among several processmsunately, once it is
identified, false sharing can be easily eliminatgdsétting the memory layout of
non-shared data.

1.9 OPERATING SYSTEM OVERVIEW
1.9.1 Objectives and Functions

e A program that is executed by the processor thajuemetly relinquishes
control and must depend on the processor to regain control

e A program that mediates between application programs arthtbevare
e A set of procedures that enable a group of people to use aimsgstem.
e A program that controls the execution of application program
e An interface between applications and hardware
1.9.2 Functions

Usage

Computer system

Control

Support

% Users of a computer system:
% Programs - use memory, use CPU time, use I/O devices
% Human users

% Programmers - use program development tools such as debugdiéors end
users - use application programs, e.g. Internet explorer

Computer system

hardware + software
OS is a part of the computer software, it is a progiam a very special program, that is
the first to be executed when the computer is swidain, and is supposed to control and
support the execution of other programs and the overaeusiathe computer system.

Control

The operating system controls the usage of the computaroes - hardware devices
and software utilities. We can think of an operating systemResaurce Manager. Here
are some of the resources managed by the OS:

e Processors,

e Main memory,

e Secondary Memory,
e Peripheral devices,
e Information.

Support
v" The operating system provides a number of services to tssissers of the
computer system:

For the programmers:
Utilities - debuggers, editors, file management, etc.
For the end users provides the interface to the application programs

For programs - loads instructions and data into memory, prepares I/O eefaos
usage, handles interrupts and error conditions.

1.10 EVOLUTION OF OPERATING SYSTEM

1.10.1 Serial Processing 1940’s — 1950’s programmer interacted directly with hardware. No
operating system.

Problems
Scheduling -users sign up for machine time. Wasted computing time

Setup Time-Setup included loading the compiler, source program, saving
compiled program, and loading and linking. If an error o@xl- start over.

1.10.2 Simple Batch Systems
Improve the utilization of computers

Jobs were submitted on cards or tape to an operator who bptichésgether
sequentially. The program that controls the execution gbthewas callednonitor - a simple
version of an operating system. The interface to the moniteaa@omplished through Job
Control Language (JCL). For example, a JCL request could hmtthe compiler for a
particular programming language, then to link and load tbgram, then to run the user
program.

Hardware features:

Memory protection: do not allow the memory area contairhegionitor to be altered

Timer: prevents a job from monopolizing the system

Problems:

Bad utilization of CPU time - the processor stays idle whedévices are in use.
1.10.3 Multiprogrammed Batch Systems

More than one program resides in the main memory. While agmogruses an I/O device the
processor does not stay idle, instead it runs another prdgram

Program A Fun Walt Fun wWalt

Time b
{al Uniprogramming
Program A Run Wall Run Wall
Program B Walt| Run Walt Run Wall
Run | Run Run | Kun
g v L
Combined A B Walt A B Walt
Time B

() Multlprogramming with two programs

New features

Memory management - to have several jobs ready to run, theybeuigept in main
memory

Job scheduling - the processor must decide which programmto r
1.10.4 Time-Sharing Systems
Multiprogramming systems: Several programs use the computer system.
Time-sharing systemsSeveral (human) users use the computer system intetgctive
Characteristics:

¢ Using multiprogramming to handle multiple interactive jobs
e Processor’s time is shared among multiple users
e Multiple users simultaneously access the system througtinals

1.10.5 Operating-System Services

The OS provides certain services to programs and to the afs#iose programs.

1. Program execution:

The system must be able to load a progmm memory and to run that
program. The program must be able to end its exagueither normally or abnormally
(indicating error).

I/O operations:

A running program may require 1/O. This I/O may involvela @r an I/O device.
File-system manipulation:

The program needs to read, write, create and delete files.
Communications :

In many circumstances, one process needs to excliafogmation with another
process. Such communication can occur in two majoyswahe first takes place
between processes that are executing on the sammputer; the second takes place
between processes that are executing on diffesemputer systems that are tied
together by a computer network.

Error detection:

The operating system constantly needs to be awgpessible errors. Errors may
occur in the CPU and memory hardware (such as a nyeenar or a power failure), in
I/O devices (such as a parity error on tape, a cdiomefailure on a network, or lack of
paper in the printer), and in the user program (fgchn arithmetic overflow, an attempt
to access an illegal memory location, or a too-gusat of CPU time). For each type of
error, the operating system should take tpprapriate action to ensure correct and
consistent computing.

Resource allocation:
Different types of resources are managed by the Os.

When there are multiple users or multiple jobs running asanee time, resources
must be allocated to each of them.

Accounting:

We want to keep track of which users use hoany and which kinds of
computer resources. This record keeping may bd faeaccounting or simply for
accumulating usage statistics.

Protection:

The owners of information stored in a multiuser caiep system may want to
control use of that information. Security of the system is agportant.

1.10.6 CP derivatives

1. CP
2. CP-VM
3. CP/M

1. CP/M-86

2. DOS

3. DRDOS

1. FreeDOS

4. Microsoft Windows

1. Windows 3.x

2. Windows 95/98/Me

3. Windows Xp

4. Windows Vista

5. Windows 7

6. windows 8

1.10.7 MULTICS derivatives

1. UNIX
e Unix V5 (SCO Unix)
e Modern Unix (Solaris / BSD)

e FreeBSD
e OpenBSD
2. Xenix
3. Linux
4. Plan 9 jim bading tahaha
¢ Inferno to hell
5. QNX
6. VSTa
7. Mac OSX
8. MIPS RISC/os
9. RISCiX

1.10.8 VMS derivatives

1. VMS
1. OpenVMS
2. 0S/2

1. eComsStation
3. Microsoft Windows =rude-magic!
1. ReactOS

1.10.9 MacOS derivatives

1. Mac OS
1. MacOS 9

1.10.10 Cambridge CAP Computer derivatives

1. KeyKOS
1. EROS
2. Coyotos
3. CapROS

1.10.11 IBSYS derivatives

1. 0S/360
2. 0OS/400

1.10.12 AmigaOS Derivatives

1. AmigaOS

2. AROS
1. AmigaOsS 4.x
2. MorphOS

1.10.13 Novel Operating Systems

1. Grasshopper
2. ITS
3. BeOS

1.11 COMPUTER SYSTEM ORGANIZATION

1.11.10perating System Structure
1.11.1.1 MS-DOS System Structure
v MS-DOS- written to provide the most functionality in the least space.
v Not divided into modules.

v' Although MS-DOS has some structure, its interfaces and levéisctionality are not
well separated.

application program

resident system program

MS-DOS device drivers

o

ROM BIOS device drivers

1.11.1.2 Unix System Structure

» UNIX - limited by hardware functionality, the original UNIXperating system had
limited structuring. The UNIX OS consists of two separablespart

» Systems programs- use kernel supported system calls to provide ugefdtions such
as compilation and file manipulation.

» The kernel - Consists of everything below the system-call irsteef and above the
physical hardware

» Provides the file system, CPU scheduling, memory mamagt, and other operating-
system functions; a large number of functions for ond.leve

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

signals terminal file system CPU scheduling

handling swapping block IO page replacement

character I/0O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

1.11.1.3 Layered Approach

v' The operating system is divided into a number géia (levels), each built on top of
lower layers. The bottom layer (layer 0), is the hane; the highest (layer N) is the user
interface.

v' An OS layer is an implementation of an abstract dkjeat is the encapsulation of data
and operations that can manipulate those data. Theseiopgi@butines) can be invoked
by higher-level layers. The layer itself can invoke operation lower-level layers.

v' Layered approach provides modularity. With modwarayers are selected such that
each layer uses functions (operations) and servicedyfower-level layers.

v' Each layer is implemented by using only those djmra that are provided lower level
layers.

v' The major difficulty is appropriate definition of varioasyérs.
1.11.1.4 Microkernel System Structure
v" Moves as much from the kernel into “user” space.
v' Communication takes place between user modules using gegsassing.
% Benefits:

> Easier to extend a microkernel

» Easier to port the operating system to new architectures

» More reliable (less code is running in kernel mode)

» More secure

1.11.2 Operating-System Operations

v

If there are no processes to execute, no I/O devicesrvice, and no users to whom to
respond, an operating system will sit quietly, waifiogsomething to happen. Events are
almost always signaled by the occurrence of an interruptrapa

A trap (or an exception) is a software-generated riapgércaused either by an error (for
example, division by zero or invalid memory access)y a specific request from a user
program that an operating-system service be peddrimhe interrupt-driven nature of an
operating system defines that systegeneral structure.

Without protection against these sorts of erroithee the computer must execute only
one process at a time or all output must be suspgmtoperly designed operating system
must ensure that an incorrect (or malicious) prognnot cause other programs to
execute incorrectly

1.11.2.1 Dual-Mode and Multimode Operation

v' In order to ensure the proper execution of the atpay system, we must be able to

distinguish between the execution of operating-systede and user defined code. The
approach taken by most computer systems is to geedvardware support that allows us
to differentiate among various modes of execution.

URD PIOCERR
uimsr o

mcde: bl
LB BT [HOCHEEN aacu i = calls syslcom cmll rebarn Ircan gvslomn call

\ £

Irap riduen
moda b= 0 miode b = 1

i
Al inoda

ST Bl w3
wociie syidam cal (e B

At the very least, we need two separate modes of operasenmode and kernel mode
(also called supervisor mode, system mode, or privileged oh).

A bit, called the mode bit, is added to the hardwareghef computer to indicate the
current mode: kernel (0) or user (1). With the mode bit, we saimguish between a task
that is executed on behalf of the operating sysaachone that is executed on behalf of
the user.

1.11.2.2Timer

v" We cannot allow a user program to get stuck in éiniia loop or to fail to call system
services and never return control to the operating system.

v" To accomplish this goal, we can use a timer. A timarlmset to interrupt the computer
after a specified period. The period may be fixed @xample, 1/60 second) or variable
(for example, from 1 millisecond to 1 second).

v' A variable timer is generally implemented by a fixed-rédelcand a counter.

v' The operating system sets the counter. Every tihee dock ticks, the counter is
decremented. When the counter reaches 0, an intesngoirs. For instance, a 10-bit
counter with a 1-millisecond clock allows interrupiisintervals from 1 millisecond to
1,024 milliseconds, in steps of 1 millisecond.

1.13 SYSTEM CALLS
v' System calls provide the interface between a process anopdhating system.
v' These calls are generally available as assembly-laegnatructions.
v/ System calls can be grouped roughly into five major caiegjor
1. Process control
2. file management
3. device management
4. information maintenance
5. communications.
1. Process Control

<+ end,abort

X/
°e

load, execute

¢

Create process and terminate process

o
25

¢ get process attributes and set process attributes.
% wait for time, wait event, signal event
% Allocate and free memory.
2. File Management
% Create file, delete file
% Open, close
% Read, write, reposition

< Get file attributes, set file attributes.

3. Device Management
% Request device, release device.
% Read, write, reposition
% Get device attribtues, set device attributes
% Logically attach or detach devices
4. Information maintenance
% Get time or date, set time or date
% Get system data, set system data
% Get process, file, or device attributes

% Set process, file or device attributes

5. Communications

R/
A X4

Create, delete communication connection

*
o0

Send, receive messages

++ Transfer status information

L)

‘0

Attach or detach remote devices

)

Two types of communication models
(a) Message passing model
(b) Shared memory model
1.14 SYSTEM PROGRAMS

v’ System programs provide a convenient environmentpfmgram development and
execution.

v' They can be divided into several categories:

1. File management:These programs create, delete, copy, rename, print,,distngnd
generally manipulate files and directories.

2. Status information: The status such as date, time, amount of ablaimemory
or diskspace, number of users or similar status information

3. File modification: Several text editors may be available to create randify the
content of files stored on disk or tape.

4. Programming-language support: Compilers, assemblers, and interpreters for
common programming languages are often provided to thewitbethe operating system.

5. Program loading and execution: The system may provide absolute loaders,
relocatable loaders, linkage editors, and overlay loaders.

6. Communications: These programs provide the mechanism for tiogairtual
connections among processes, users, and differemputemsystems. (email, FTP, Remote log
in)

7. Application programs: Programs that are useful to solve commonlpnog, or
to perform common operations.

Eg. Web browsers, database systems.

UNIT -1l PROCESS MANAGEMENT

Processes-Process Concept, Process Scheduling, Operati on Processes, Interprocess
Communication; Threads- Overview, Multicore Programming, Multithreading Models;
Windows 7 -Thread and SMP Management. Process Synchriation - Critical Section
Problem, Mutex Locks,Semophores, Monitors; CPU Scheduling and Belocks.

2.1 PROCESSES

v/ A processis a program in execution.

0 We are assuming @ultiprogramming OS that can switch from one process to
another.

0 Sometimes this is callgaseudoparallelism since one has the illusion of a parallel
processor.

0 The other possibility igeal parallelism in which two or more processes are
actually running at once because the computer syste parallel processor, i.e.,
has more than one processor.

2.1.1: The Process Model

Even though in actuality there are many processes ruabiogce, the OS gives each process the
illusion that it is running alone.

e Virtual time : The time used by just these processes. Virtual pnogresses at a rate
independent of other processes. Actually, this isefathe virtual time is typically
incremented a little during systems calls usedofocess switching; so if there are more
other processors more ~overhead" virtual time occurs.

e Virtual memory : The memory as viewed by the process. Each progpgslly believes
it has a contiguous chunk of memory starting aation zero. Of course this can't be true

of all processes (or they would be using the sammong and in modern systems it is
actually true of no processes (the memory assigsedbt contiguous and does not
include location zero).

Think of the individual modules that are input he tinker. Each numbers its addresses
from zero; the linker eventually translates thesdative addresses into absolute
addresses. That is the linker provides to the askna virtual memory in which
addresses start at zero.

Virtual time and virtual memory are examples of edagtons provided by the operating system
to the user processes so that the latter se@stra pleasant virtual machine than actually
exists.

2.1.2 Process Hierarchies

Modern general purpose operating systems permit a usegdte and destroy processes.

e In unix this is done by théork system call, which createschild process, and thexit
system call, which terminates the current process.

o After a fork both parent and child keep running éed they have th&ame program text)
and each can fork off other processes.

e A process tree results. The root of the tree is aiapprocess created by the OS during
startup.

e A process caihoose to wait for children to terminate. For example, if€&Sued a wait()
system call it would block until G finished.

Old or primitive operating system like MS-DOS are matltiprogrammed so when one process
starts another, the first processigomatically blocked and waits until the second is finished.

2.2 PROCESS SCHEDULING

v' The objective of multiprogramming is to have somecpss running at all times, so as
to maximize CPU utilization.

v' Scheduling Queues

o There are 3 types of scheduling queues .They are :
e Job Queue
e Ready Queue

e Device Queue

Quoaas hoador PR, PR

Fecly
UL

roisters roaistors

Lty

tapc =
Ll 0 il

e haad

LCTEE - H > =
b el FE, [t = POE,

i~ - T—
sk haacl
it 0 tall

Serrer el | hemd -I—.. o
et o | tall -|——'-"""-

v

As processes enter the system, they are put into a job queue.

The processes that are residing in main memoryaaadeady and waiting to execute
are kept on a list called the ready queue.

The list of processes waiting for an I/O device istkgpa device queue for that
particular device.

A new process is initially put in the ready queuevdits in the ready queue until it is
selected for execution (or dispatched).

Once the process is assigned tothe CPU and is exgcatie of several events could
occur:

0 The process could issue an /O request, and thenldeedoin an 1/0
queue.

0 The process could create a new subprocess and wait fomiaaéon.

v" The process could be removed forcibly from the CPUa aesult of an interrupt, and be
put back in the ready Queue.

v' A common representation of process scheduling is a queuiaigguch.
Schedulers

v' A process migrates between the various scheduling queuagtilord its lifetime.

v' The operating system must select, for scheduling purpaseggses from these queues
in some fashion.

v' The selection process is carried out by the appropriaeeistdr.
v' There are three different types of schedulers.They are:

1. Long-term Scheduler or Job Scheduler

2. Short-term Scheduler or CPU Scheduler

3. Medium term Scheduler

The long-term scheduler, or job schedulerselects processes from this pool and loads them
into memory for execution. It is invoked very in fremtly. It controls the degree of
multiprogramming.

The short-term scheduler, or CPU schedulerselects from among the processes that are
ready to execute, and allocates the CPU to one of them. “akad very frequently.

o Processes can be described as either I/O bound or CPU bound.

0 An NO-bound process spends more of its time doigy than it spends doing
computations.

0o A CPU-bound process, on the other hand, generatesetiQests infrequently,
using more of its time doing computation than an 1/0O-boundgss uses.

0 The system with the best performance will have a coatigin of CPU-bound and
I/O-bound processes.

: ready queles I = CPU

o~ — _

time slice -
expired

child fark a -
execules child

/’(i;;m\, wait for an 8
\\‘?fcu rs A intemrupl

The Medium term Scheduler

0 Some operating systems, such as time-sharirgjerag, may introduce an
additional, intermediate level of scheduling.

0 The key idea is medium-term scheduler, removexgsses from memory and
thus reduces the degree of multiprogramming.

o At some later time, the process can be reinteduinto memory and its
execution can be continued where it left off. This schemdledcswapping.

2.3 OPERATIONS ON PROCESSES
2.3.1. Process Creation
v' A process may create several new processes, during the obesaution.

v' The creating process is called a parent processgegahehe new processes are called the
children of that process.

v When a process creates a new process, two possibilitiesirexesms of execution:
e The parent continues to execute concurrently with its idild
e The parent waits until some or all of its children have tertatha

v' There are also two possibilities in terms of the addresesfabe new process:
e The child process is a duplicate of the parent process.

v' The child process has a program loaded into it.

In UNIX, each process is identified by its geses identifier, which is a unique
integer. A new process is created by the fork system call.

2.3.2. Process

Termination
BewER

v' A process L
terminates
when it
finishes
executing
its final
statement
and asks

ey

e

the operating system to delete it by using the exit systém ca

v' At that point, the process may return data (outputjts parent process (via the wait
system call).

v' A process can cause the termination of another process appeopriate system call.

v' A parent may terminate the execution of one oftiitdeen for a variety of reasons, such

as these:

e The child has exceeded its usage of some of tleiress that it has been
allocated.

e The task assigned to the child is no longer required.

e The parent is exiting, and the operating system do¢sllow a child to
continue if its parent terminates. On suchtesys, if a process
terminates (either normally or abnormally), thenitslichildren must also
be terminated. This phenomenon, referred to as cascadimggtiEom
Is normally initiated by the operating system.

2.4 INTERPROCESS COMMUNICATION

v' Operating systems provide the means for cadiper processes to communicate
with each other via an interprocess communication (P{jyfac

v' IPC provides a mechanism to allow processecammunicate and to synchronize
their actions.IPC is best provided by a message passitegrsys

v' Basic Structure:

If processes P and Q want to communicate, they nared messages to and receive
messages from each other; a communication link must estisebn them.

v" Physical implementation of the link is done through a haedwas , network etc,

v' There are several methods for logically implementing la dind the operations:

1.

2
3
4.
5

2.4.1 Naming

Direct or indirect communication

. Symmetric or asymmetric communication

. Automatic or explicit buffering

Send by copy or send by reference

. Fixed-sized or variable-sized messages

v" Processes that want to communicate must have a way to reéahtother.

v' They can use either direct or indirect communication.
2.4.1.1. Direct Communication

» Each process that wants to communicate muglicely name the recipient or
sender of the communication.

» A communication link in this scheme has the following properti

= A link is established automatically betweenergv pair of processes
that want to communicate. The processes need to knbweach other's
identity to communicate.

= Alink is associated with exactly two processes.
= Exactly one link exists between each pair of processes.
» There are two ways of addressing namely
= Symmetry in addressing
= Asymmetry in addressing
» In symmetry in addressing, the send and receive primitieedeéined as:
= send(P, message) Send a message to process P
= receive(Q, message) Receive a message from Q
» In asymmetry in addressing , the send & receive primitivesledined as:
= send (p, message) send a message to process p
= receive(id, message) receive message from any process,
id is set to the name of the process with which communicatietaekan place
2.4.1.2. Indirect Communication

v' With indirect communication, the messages an¢ tee and received from mailboxes,
or ports.

v" The send and receive primitives are defined as follows:

= send (A, message) Send a message to mailbox A.

= receive (A, message) Receive a message from mailbox A.
v A communication link has the following properties:

» Alink is established between a pair of processeg if both members of the
pair have a shared mailbox.

» A link may be associated with more than two processes.

» A number of different links may exist betweeacle pair of communicating
processes, with each link corresponding to one mailbox

2.4.1.3. Buffering

v A link has some capacity that determines the nuroberessage that can reside in it
temporarily. This property can be viewed as a queue of gessdtached to the link.

v There are three ways that such a queue can be implemented.

% Zero capacity: Queue length of maximum is 0. No message is waiting in a queue.
The sender must wait until the recipient receivesmigssage. (Message system
with no buffering)

% Bounded capacity: The queue has finite length n. Thus at most n messean
reside in it.

% Unbounded capacity: The queue has potentially infinite length. Thus any
number of messages can wait in it. The sender is never delayed.

2.4.1.4 Synchronization
Message passing may be either blocking or non-blocking.

 Blocking Send- The sender blocks itself till the message serit tsyreceived by
the receiver.

“+ Non-blocking Send- The sender does not block itself after sendingntliessage
but continues with its normal operation.

“ Blocking Receive- The receiver blocks itself until it receives the message.
¢ Non-blocking Receive- The receiver does not block itself.

There are two levels of communication
% Low - level form of communication eg. Socket
¢ High — level form of communication eg.RPC , RMI

2.5 THREADS

v A thread is the basic unit of CPU utilization.

It is sometimes called as a lightweight process.

v
v It consists of a thread ID, a program counter, a registemsea stack.
v

It shares with other threads belonging to the samoeegss its code section, data
section, and resources such as open files and signals.

v' Atraditional or heavy weight process has a single threadrifad.

v' If the process has multiple threads of control, it can do mhare one task at a time.

Gode data Nles Gode data | Ml

. | | . . |
registers stack reqgisters ||| registars | registers

| stack || stack |

(.J

stack |

singhe-threaded process multithreaded process

2.5.1 Benefits of multithreaded programming

K/
L X4

Responsiveness

R

* Resource Sharing

R/
o

Economy

X3

2S

Utilization of MP Architectures

2.5.2 User thread and Kernel threads

2.5.2.1 User threads
e Supported above the kernel and implemented by a threadyliir the user level.
e Thread creation , management and scheduling are doner ispase.
e Fast to create and manage

e When a user thread performs a blocking system call ,it wile#uwe entire
process to block even if other threads are availablentavithin the application.

e Example: POSIX Pthreads,Mach C-threads and Solaris 2 Uldthrea
2.5.2.2.Kernel threads

e Supported directly by the OS.

e Thread creation , management and scheduling are donenl ksgrace.

e Slow to create and manage

e When a kernel thread performs a blocking system call ,thekscthedules
another thread in the application for execution.

e Example: Windows NT, Windows 2000 , Solaris 2,BeOS and Tru64 UNIX
support kernel threads.

2.5.3 Multicore Programming

v

v

v

A recent trend in computer architecture is to produce chigsmiittiple cores, or CPUs
on a single chip.

A multi-threaded application running on a traditional seagbre chip would have to
interleave the threads.

On a multi-core chip, however, the threads could be spreadsaitre available cores,
allowing true parallel processing.

‘Elr'-'='||l;l LI T] T_l:l Tj Td T‘_ T-! Tj Td_ T—

Concurrent execution on a single-core system.

core 1 T4 Tg T4 To T4 ELAHE

core 2 To T4 T Ta To i

time

For operating systems, multi-core chips require new schegalgorithms to make better
use of the multiple cores available.

As multi-threading becomes more pervasive and more impdtteousands instead of
tens of threads), CPUs have been developed to support mot@aegous threads per
core in hardware.

2.5.3.1 Programming Challenges

v For application programmers, there are five areas wherte-coué chips present new

challenges:

1. ldentifying tasks - Examining applications to find activities that can be
performed concurrently.

2. Balance- Finding tasks to run concurrently that provide equal valae
don't waste a thread on trivial tasks.

3. Data splitting - To prevent the threads from interfering with one another.

4. Data dependency If one task is dependent upon the results of another,
then the tasks need to be synchronized to assure accesropler order.

5. Testing and debugging Inherently more difficult in parallel processing
situations, as the race conditions become much more corpdedifficult
to identify.

2.5.3.2 Types of Parallelism
v" In theory there are two different ways to parallelize the waklo

1. Data parallelism divides the data up amongst multiple cores (threads),
and performs the same task
on each subset of the data. g g
For example dividing a é«— user thread
large image up into pieces
and performing the same
digital image processing on
each piece on different
cores.
2. Task parallelism divides A el thFead
the different tasks to be
performed among the different cores and performs themlsineously.

v In practice no program is ever divided up solely by one ootiher of these, but instead
by some sort of hybrid combination.

2.5.4 Multithreading models
1. Many-to-One
2. One-to-One
3. Many-to-Many
1. Many-to-One:
v' Many user-level threads mapped to single kernel thread.

v' Used on systems that do not support kernel threads.

SRR

l\\ i kamal ihimad

2.0ne-to-One:

v' Each user-level thread maps to a kernel thread.

v' Examples
- Windows 95/98/NT/2000
- 0S/2

3. Many-to-Many Model:
v Allows many user level threads to be mapped to many kerneldre
v Allows the operating system to create a sufficient numbeeifet threads.
% Solaris 2

< Windows NT/2000

2.6 THREAD LIBRARIES

v" Thread libraries provide programmers wi
an API for creating and managing thread

v' Thread libraries may be implemente
either in user space or in kernel space. -
former involves API functions “— kemel thread

implemented solely within user space, wiui
no kernel support. The latter involves
system calls, and requires a kernel with thread library stippor

“—— uyser thread

v' There are three main thread libraries in use today:

1.POSIX Pthreads- may be provided as either a user or kernel lihrasyan extension
to the POSIX standard.

2. Win32 threads- provided as a kernel-level library on Windows systems.

3. Java threads - Since Java generally runs on a Java Virtual Maghithe
implementation of threads is based upon whatever @Shardware the JVM is
running on, i.e. either Pthreads or Win32 threads dependitigeaystem.

v' The following sections will demonstrate the use ofe#ttls in all three systems for
calculating the sum of integers from 0 to N in aasafe thread, and storing the result in a
variable "sum".

2.6.1 Pthreads

v" The POSIX standard (IEEE 1003.1c) defines the spatidin for pThreads, not the
implementation.

v' pThreads are available on Solaris, Linux, Mac OSX, Tru8# via public domain
shareware for Windows.

v Global variables are shared amongst all threads.
v" One thread can wait for the others to rejoin before contiuin

v' pThreads begin execution in a specified function, in thésrgte the runner() function:

#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread.t workers [NUM_THREADS] ;

for (int i = 0; i < NUM_THREADS; i++)
pthread_join(workers[i], NULL);

2.6.2 Java Threads
v' ALL Java programs use Threads - even "common" singlextie ones.

v' The creation of new Threads requires Objects thateimgnt the Runnable Interface,
which means they contain a method "public void tin(Any descendant of the Thread
class will naturally contain such a method. (In pcacthe run() method must be
overridden / provided for the thread to have any practicaitfonality.)

v' Creating a Thread Object does not start the thneiawiimg - To do that the program must
call the Thread's "start()" method. Start() altesaand initializes memory for the
Thread, and then calls the run() method. (Programmers a@athotin() directly.)

v' Because Java does not support global variablesadidnemust be passed a reference to a
shared Object in order to share data, in this example the "Sbratt.

v" Note that the JVM runs on top of a native OS, and tiet]VM specification does not
specify what model to use for mapping Java threadsetnel threads. This decision is
JVM implementation dependant, and may be one-to-one, mamgibg; or many to one..
(On a UNIX system the JVM normally uses PThreads amdh Windows system it
normally uses windows threads.)

2.6.3 Windows Threads

v Similar to pThreads. Examine the code example tateméifferences, which are mostly
syntactic & nomenclature:

#include =windows.h>=>

#include <stdio.h>

DWORD Sum; /* data is shared by the thread(s) =/
/* the thread runs in this separate function */

DWORD WINAPRPI Summation (LBPVOID Param)

1
DWORD Upper = * (DWORD*) Param;
for (DWORD i = 0; i <= Upper; i++)
Sum += i
return 0O;

}

int main (int arge, char *argv[])
{
DWORD ThreadId;
HANDLE ThreadHandle;
int Param;
/* perform some basic error checking */
if ({arge 1= 2) {
fprintfi(stdery, "An integer parameter is reguiredin") ;
return -1 ;
]
Param = atoi largwl[l]});:
if (Param < 0) {
fprintf (stderr, "An integer == 0 is reguired\n");
FetRrE el

}

/S ¢create the thread
ThreadHandle = CreateThread/|
NULL, // default gecurity attributes
G /f default stack size
Summation; /) thread functicn
&Param, // paramseter to thread function
o, // default creation flags
&ThreadId) ; // returns the thread identifiesr

if (ThreadHandle != NULL) {
/) mow wait for the thread to finish
WaitForSingleCbhbject (ThreadHandle, INFINITE) 5

/S close the thread handle
CloseHandle (ThreadHandle) ;

printf ("sum = Fd\n", Sum) ;

2.7 PROCESS SYNCHRONIZATION
2.7.1 Background
Producer code
item nextProduced,;

while(true) {

/* Produce an item and store it in nextProduced */
nextProduced = makeNewltem(. . .);

[* Wait for space to become available */
while(((in+ 1) % BUFFER_SIZE) == out)
; [* Do nothing */

/* And then store the item and repeat the loop. */
buffer[in] = nextProduced,;
in=(in+1) % BUFFER_SIZE;

}

Consumer code
item nextConsumed;
while(true) {

/* Wait for an item to become available */
while(in == out)
; I* Do nothing */

/* Get the next available item */
nextConsumed = buffer[out |;
out =(out+ 1) % BUFFER_SIZE;

/* Consume the item in nextConsumed
(Do something with it) */

v' The only problem with the above code is that the maximum euwoflitems which can
be placed into the buffer is BUFFER_SIZE - 1. One slot is uteaibecause there
always has to be a gap between the producer and the consumer.

v' We could try to overcome this deficiency by introducing anter variable, as shown in
the following code segments:

v

Producer Process:

while (true)
/* produce an item in nextProduced */
while (counter == BUFFER.SIZE)
; /* do nothing */

buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

Consumer Process:

while (true)

{

while [(counter == 0)

; /* do nothing */

nextlonsumed = buffer[out] ;

out = {(out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in nextConsumed */
}

Unfortunately we have now introduced a new problemabse both the producer and
the consumer are adjusting the value of the vaialdunter, which can lead to a
condition known as a race condition. In this conditéo piece of code may or may not
work correctly, depending on which of two simultanepuscesses executes first, and
more importantly if one of the processes gets infed such that the other process runs
between important steps of the first process. (Bank bakraaple discussed in class.)

The particular problem above comes from the prodezecuting "counter++" at the
same time the consumer is executing "counter--bnk process gets part way through
making the update and then the other process inuyttise value of counter can get left in
an incorrect state.

But, you might say, "Each of those are single irdioms - How can they get
interrupted halfway through?" The answer is th#ialgh they are single instructions in
C++, they are actually three steps each at the hardware level:

(1) Fetch counter from memory into a register,
(2) increment or decrement the register, and

(3) Store the new value of counter back to memoryhéfinstructions from the two
processes get interleaved, there could be seriamidgmns, such as illustrated by the
following:

Producer:

Consumer:
Interleaving:
Ty: producer
Tyi: producer
Ts: comsumer
Ty consumer
Ty producer
Ts: consumer

register; = counter
registery =registery +1
counter = register;

register, = counter
register, =registery — 1
counter = register

execute register; = counter
execute register; =registery + 1
execute register, = counter
execute register, = register, — 1
execute counter = register;
execute counter = regisfers

2.8 CRITICAL-SECTION PROBLEM

v' The producer-consumer problem described above is dispe@mple of a more general
situation known as theritical section problem. The general idea is that in a number of
cooperating processes, each has a critical section of catleéheifollowing conditions

and terminologies:

o Only one process in the group can be allowed to execute ircthimal section at
any one time. If one process is already executing theicadrgection and another
process wishes to do so, then the second process must be madeitdilvthe
first process has completed their critical section work.

o The code preceding the critical section, and which controlssado the critical
section, is termed the entry section. It acts like a cayetolhtrolled locking door.

o The code following the critical section is termed the esatisn. It generally
releases the lock on someone else's door, or at least letertdeknow that they

are no longer in their critical section.

o The rest of the code not included in either the criticaigeor the entry or exit

sections is termed the remainder section.

do {

{ entry section

critical section

| exit section

remainder section

}while (TRUE);

[register, = 5}
{register| = 6}
{registers = 5|
{register, = 4}
[counter = 6}
[counter = 4}

v" A solution to the critical section problem must satisfy tH¥ang three conditions:

1. Mutual Exclusion - Only one process at a time can be executing in tréical
section.

2. Progress- If no process is currently executing in theiricat section, and one or
more processes want to execute their critical sectleen only the processes not
in their remainder sections can participate indaeision, and the decision cannot
be postponed indefinitely. (i.e. processes cannot be blookedefr waiting to get
into their critical sections.)

3. Bounded Waiting - There exists a limit as to how many other processasget
into their critical sections after a process retguestry into their critical section
and before that request is granted. (l.e. a prooegsesting entry into their
critical section will get a turn eventually, and tés a limit as to how many other
processes get to go first.)

v' We assume that all processes proceed at a non-geeal,sbut no assumptions can be
made regarding theslative speed of one process versus another.

v' Kernel processes can also be subject to race comslitiwhich can be especially
problematic when updating commonly shared kernel datactures such as open file
tables or virtual memory management. Accordingly kbkyrcan take on one of two
forms:

o Non-preemptive kerrels do not allow processes to be interrupted whilesimmel
mode. This eliminates the possibility of kernel-medee conditions, but requires
kernel mode operations to complete very quickly, eeml be problematic for real-
time systems, because timing cannot be guaranteed.

o Preemptive kernelsallow for real-time operations, but must be carefwiytten
to avoid race conditions. This can be especialbkyrion SMP systems, in which
multiple kernel processes may be running simultaneoustjftarent processors.

2.9 MUTEX LOCKS

v' The hardware solutions presented above are offéaudti for ordinary programmers to
access, particularly on multi-processor machines,panticularly because they are often
platform-dependent.

v' Therefore most systems offer a software API equitateed mutex locks or simply
mutexes. (For mutual exclusion)

v" The terminology when using mutexes is to acquire &k lprior to entering a critical
section, and to release it when exiting.

do {

.acquzrfjgck

critical section

release lock

remainder section

}while (TRUE);

v' Just as with hardware locks, the acquire step willkotbe process if the lock is in use by
another process, and both the acquire and release opgatatomic.

v' Acquire and release can be implemented as shown based on a boolean variable
"available":

Acquire:

acquire() {
while (l'available)
; /* busy wait */
available = false; ;

}

Release:

release() {
available = true;
1

v" One problem with the implementation shown here, (andhe hardware solutions
presented earlier), is the busy loop used to bfmokesses in the acquire phase. These
types of locks are referred to as spinlocks, bec#luseCPU just sits and spins while
blocking the process.

v' Spinlocks are wasteful of cpu cycles, and are aydmld idea on single-cpu single-
threaded machines, because the spinlock blocksntire €omputer, and doesn't allow
any other process to release the lock. (Until thedualer kicks the spinning process off
of the cpu.)

v" On the other hand, spinlocks do not incur the ovetltfaa context switch, so they are
effectively used on multi-threaded machines wheis iéxpected that the lock will be
released after a short time.

2.10 SEMAPHORES

v' A more robust alternative to simple mutexes is te ssnaphores, which are integer
variables for which only two (atomic) operations atefined, the wait and signal
operations, as shown in the following figure.

v" Note that not only must the variable-changing s{efs- and S++) be indivisible, it is
also necessary that for the wait operation when é¢ke fgroves false that there be no
interruptions before S gets decremented. It IS okayeve, for the busy loop to be
interrupted when the test is true, which prevents the system from hanging forever.

Wait:
wait (8) {
while 8 ==10
; // no-op
S--i
}
Signal:
signal (8) {
S++;

2.10.1 Semaphore Usage
v In practice, semaphores can take on one of two forms:

o Binary semaphorescan take on one of two values, O or 1. They can bd tese
solve the critical section problem as describedrapand can be used as mutexes
on systems that do not provide a separate mutekanem.. The use of mutexes
for this purpose is shown in Figure below.

do {
waiting(mutex) ;

// critical section
signal (mutex) ;

// remainder section
}while (TRUE);

v' Semaphores can also be used to synchronize cepaiations between processes. For
example, suppose it is important that process Ptueaestatement S1 before process P2
executes statement S2.

v' First we create a semaphore named synch that i®dshar the two processes, and
initialize it to zero.

Then in process P1 we insert the code:

S1;
signal(synch);

and in process P2 we insert the code:

wait(synch);
S2;

Because synch was initialized to 0, process P2 wdthklon the wait until after P1
executes the call to signal.

2.10.2 Semaphore Implementation

v' The big problem with semaphores as described alsotieeibusy loop in the wait call,
which consumes CPU cycles without doing any useful wbhks type of lock is known
as aspinlock, because the lock just sits there and spins whilgaits. While this is
generally a bad thing, it does have the advantagetahvoking context switches, and so
it is sometimes used in multi-processing systemsnwthe wait time is expected to be
short - One thread spins on one processor while anctimpletes their critical section
on another processor.

v" An alternative approach is to block a process whes fiorced to wait for an available
semaphore, and swap it out of the CPU. In this impléatiem each semaphore needs to
maintain a list of processes that are blocked waitor it, so that one of the processes
can be woken up and swapped back in when the semalpbcoenes available. (Whether
it gets swapped back into the CPU immediately or tdreit needs to hang out in the
ready queue for a while is a scheduling problem.)

v" The new definition of a semaphore and the correspgnalait and signal operations are
shown as follows:

Semaphore Structure:

typedef struct {

int wvalue;

struct process *1list;
} semaphore;

Wait Operation:

wait (semaphore *3) {
S->value——;
if (8->value < 0) {
add this process to S->1ist;
block(J;

}
Signal Operation:

signal (semaphore *3) |
S->value++;
if (S-»>value <= 0)
remove a process P from 8->1ist;
wakeup(P) ;

2.10.3 Deadlocks and Starvation

v" One important problem that can arise when using skanap to block processes waiting
for a limited resource is the problem of deadloelsich occur when multiple processes
are blocked, each waiting for a resource that cdp lbe freed by one of the other (
blocked) processes, as illustrated in the following example

P 12
walt (3S); wait(Q);
wait Q) ; wait (32 ;
signéi(S}; Sigﬂéi(ﬂ};
signal (Q); signal (8);

v" Another problem to consider is that of starvationwinich one or more processes gets
blocked forever, and never get a chance to take thea in the critical section. For
example, in the semaphores above, we did not speledyalgorithms for adding
processes to the waiting queue in the semaphdbreiwait() call, or selecting one to be
removed from the queue in the signal() call. If thethod chosen is a FIFO queue, then

every process will eventually get their turn, bua iEIFO queue is implemented instead,
then the first process to start waiting could starve.

2.11 MONITORS

v' Semaphores can be very useful for solving concuayreproblems but only if
programmers use them properly If even one process fails to abide by the progeraf
semaphores, either accidentally or deliberately, therwhole system breaks down. (And

since concurrency problems are by definition ramenés, the problem code may easily go
unnoticed and/or be heinous to debug.)

v’ For this reason a higher-level language construct has leseioged, calledhonitors.

2.11.1 Monitor Usage

% A monitor is essentially a class, in which all dataprivate, and with the special
restriction that only one method within any givenmtor object may be active at the
same time. An additional restriction is that monitathods may only access the shared

data within the monitor and any data passed to thenparameters. l.e. they cannot
access any data external to the monitor.

monitor monitor namie

{

// shared variable declarations

procedure P1 (. . . } {

}

procedure P2 (. . .)} {

}

procedﬁre Ppn (- . .) A

}

initialization cade (. . .) {

}

« In order to fully realize the potential of monitpsge need to introduce one additional
new data type, known ascandition.

e A variable of type condition has only two legal opienas, wait and

signal. l.e. if X was defined as type condition, theralegperations would
be X.wait() and X.signal()

The wait operation blocks a process until some gphecess calls signal,
and adds the blocked process onto a list associated witlotidition.

The signal process does nothing if there are nogsses waiting on that
condition. Otherwise it wakes up exactly one process fthe condition's
list of waiting processes. (Contrast this with cougtsemaphores, which
always affect the semaphore on a signal call.)

BNy CpiSLs T e

e =

/.,- shaned daka \\.::_f_,—
e Y

opesElicrs

- =
M mitinfsabon -

. ., ="
~i o o

Signal and wait- When process P issues the signal to wake up pr&geBsthen waits, either
for Q to leave the monitor or on some other condition.

Signal and continue- When P issues the signal, Q waits, either for P ibtle& monitor or for
some other condition.

There are arguments for and against either choicec@rent Pascal offers a third alternative -
The signal call causes the signaling process toediately exit the monitor, so that the waiting
process can then wake up and proceed.

2.11.2 Implementing a Monitor Using Semaphores

R/
L X4

One possible implementation of a monitor uses a skarap'mutex” to control mutual
exclusionary access to the monitor, and a coungngaphore "next" on which processes
can suspend themselves after they are already&hgie monitor (in conjunction with
condition variables, see below.) The integer nextntdweeps track of how many
processes are waiting in the next queue. Externatlgssible monitor processes are then
implemented as:

wait (mutex) ;

boa.}? of F

if (next_count > 0)
signal (next);
else
signal (mutex) ;

% Condition variables can be implemented using sewrgshas well. For a condition X,
semaphore "x_sem" and an integer "x_count" aredutced, both initialized to zero. The
wait and signal methods are then implemented aswvisll (This approach to the
condition implements the signal-and-wait option désd above for ensuring that only
one process at time is active inside the monitor.)

2.12 CPU SCHEDULING

2.12.1 Basic Concepts

v' Almost all programs have some alternating cycle BtJGiumber crunching and waiting
for 1/0 of some kind. (Even a simple fetch from meyntakes a long time relative to
CPU speeds.)

v In a simple system running a single process, the spent waiting for I/O is wasted, and
those CPU cycles are lost forever.

v" A scheduling system allows one process to use the \@titld another is waiting for 1/O,
thereby making full use of otherwise lost CPU cycles.

v' The challenge is to make the overall system asciefit" and "fair" as possible, subject
to varying and often dynamic conditions, and wheff&cient" and "fair" are somewhat
subjective terms, often subject to shifting priority pagi

2.12.2 CPU-I/O Burst Cycle

v' Almost all processes alternate between two states in a gogtitycle, as shown in
Figure below:

o A CPU burst of performing calculations, and
o An /O burst, waiting for data transfer in or out of the system.

]

load store
add store = CPU burst
read from file

walil for I/O { =10 burst

store increment |
index = CPU burst
write to file !

walt for 170 > 150 burst

load siore
add store I:— CPU burst
read from file

| walt for 20 = O burst

v' CPU bursts vary from process to process, and from progrardeoapn, but an extensive
study shows frequency patterns similar to that shown in Figure

frequency

0 a 16 24 32 40
burst duration {milliseconds)

2.12.3 CPU Scheduler

v' Whenever the CPU becomes idle, it is the job of the CPU Schedulea(the short-
term scheduler) to select another process from the reaiygeda run next.

v' The storage structure for the ready queue and the algargkthto select the next
process are not necessarily a FIFO queue. There are satemahtives to choose from,
as well as numerous adjustable parameters for each afgorith

2.12.3.1 Preemptive Scheduling

e CPU scheduling decisions take place under one of four ommstit

1. When a process switches from the running stateeavaiting state, such
as for an I/0O request or invocation of the wait() system call.

2. When a process switches from the running statihg¢oready state, for
example in response to an interrupt.

3. When a process switches from the waiting statbaa¢ady state, say at
completion of I/O or a return from wait().

4. When a process terminates.

e For conditions 1 and 4 there is no choice - A new process mustdmtesl.

e For conditions 2 and 3 there is a choice - To eittmatinue running the current
process, or select a different one.

« If scheduling takes place only under conditions d 4nthe system is said to be
non-preemptive, or cooperative. Under these conditions, once a process starts
running it keeps running, until it either voluntgriblocks or until it finishes.
Otherwise the system is said tofyeemptive.

e Windows used non-preemptive scheduling up to Wind8ws and started using
pre-emptive scheduling with Win95. Macs used non+ipp&ve prior to OSX,
and pre-emptive since then. Note that pre-emptivediding is only possible on
hardware that supports a timer interrupt.

« Note that pre-emptive scheduling can cause probilehen two processes share
data, because one process may get interrupted imitheéle of updating shared
data structures.

e Preemption can also be a problem if the kernel is busy mgaiéng a system call
(e.g. updating critical kernel data structures) when greemption occurs. Most
modern UNIX deal with this problem by making the psevait until the system
call has either completed or blocked before allowitige preemption
Unfortunately this solution is problematic for rdmhe systems, as real-time
response can no longer be guaranteed.

e Some critical sections of code protect themselves fconcurrency problems by
disabling interrupts before entering the criticattson and re-enabling interrupts
on exiting the section. Needless to say, this showllg lme done in rare situations,
and only on very short pieces of code that willdinguickly, (usually just a few
machine instructions.)

2.12.4 Dispatcher

v' Thedispatcheris the module that gives control of the CPU to thexpss selected by the
scheduler. This function involves:
0 Switching context.
0 Switching to user mode.
o0 Jumping to the proper location in the newly loaded program.
v' The dispatcher needs to be as fast as possiblejsasun on every context switch. The
time consumed by the dispatcher is knowigpatch latency.

2.12.5 Scheduling Algorithms

v" The following subsections will explain several comnssheduling strategies, looking at
only a single CPU burst each for a small numberrot@sses. Obviously real systems
have to deal with a lot more simultaneous processesuting their CPU-1/O burst

cycles.
2.12.5.1 First-Come First-Serve Scheduling, FCFS

e FCFS is very simple - Just a FIFO queue, like customeiting in line at the

bank or the post office or at a copying machine.
e Unfortunately, however, FCFS can yield some very lavgrage wait times,
particularly if the first process to get there taka& long time. For example,

consider the following three processes:

‘ Process | Burst Time
| P1 | 24
| P2 | 3
| P3 | 3

e In the first Gantt chart below, process P1 arrivest.fifrhe average waiting time
for the three processesis (0+24 +27)/3=17.0 ms.

e In the second Gantt chart below, the same three mesdsmve an average wait
time of (0 + 3 + 6)/ 3 = 3.0 ms. The total rundifior the three bursts is the
same, but in the second case two of the three fmisth quicker, and the other

process is only delayed by a short amount.

P Ps | Py

_P

P
|

(s8]
i

2.12.5.2 Shortest-Job-First Scheduling, SJF

e The idea behind the SJF algorithm is to pick thelagst fastest little job that
needs to be done, get it out of the way first, and thek the next smallest fastest

job to do next.

Technically this algorithm picks a process basedhennext shortesEPU burst,

not the overall process time.
For example, the Gantt chart below is based uponoltenving CPU burst times,
(and the assumption that all jobs arrive at the same time.)

\ Process | Burst Time
| P1 | 6
| P2 | 8
| P3 | 7
| P4 | 3
[" !
i Py ‘ P3 Po
|
3 9 16 24
e Inthe case above the average waittimeis (0+3+9+ 16) /4 s7(am
opposed to 10.25 ms for FCFS for the same processes.)
12 |-
T 10
8 =
i 6
4 = i
time ——»
CPU burst () &} 4 (5] 4 13 13 13
"guess” (1)) 10 g G 5] 5 =] 11 12

SJF can be either preemptive or non-preemptiveermpéon occurs when a new
process arrives in the ready queue that has agbeedburst time shorter than the
time remaining in the process whose burst is cugremt the CPU. Preemptive
SJF is sometimes referred toshsrtest remaining time first scheduling.
For example, the following Gantt chart is based upon the fallpwata:

‘ Process | Arrival Time ‘ Burst Time
P 0 | 8
P2 | 1 | 4
P3| 2 | 9
o4 3 | 5
i D = P, Py Ps
il 5 0 L 2

e The average wait time in this case is
(5-3)+(10-1)+(17-2))/4=26/4=6.5ms.

(As opposed to 7.75 ms for non-preemptive SJF or 8.75 for FCFS.)

2.12.5.3 Priority Scheduling

« Priority scheduling is a more general case of SUWhich each job is assigned a
priority and the job with the highest priority getsheduled first. (SJF uses the
inverse of the next expected burst time as itsrityie The smaller the expected
burst, the higher the priority.)

e Note that in practice, priorities are implementedngsintegers within a fixed
range, but there is no agreed-upon convention ashather "high" priorities use
large numbers or small numbers.

o For example, the following Gantt chart is based upfwse process burst times
and priorities, and yields an average waiting time of 8.2 ms

‘ Process ‘ Burst Time ‘ Priority

| P1 | 10 | 3

| P2 | 1 | 1

| P3 | 2 | 4

| P4 | 1 | 5

| P5 | 5 | 2
- - | | =
£z =5 B1 = =

o Priorities can be assigned either internally oremxdlly. Internal priorities are
assigned by the OS using criteria such as average tme, ratio of CPU to 1/O
activity, system resource use, and other factordabtaito the kernel. External
priorities are assigned by users, based on the tampme of the job, fees paid,
politics, etc.

2.12.5.4 Round Robin Scheduling

e Round robin scheduling is similar to FCFS schedylexcept that CPU bursts are
assigned with limits calletime quantum.
When a process is given the CPU, a timer is seivfatever value has been set
for a time quantum.
o If the process finishes its burst before the time quantown@rtexpires, then
it is swapped out of the CPU just like the normal FCFS algorithm.
o If the timer goes off first, then the process is swepout of the CPU and
moved to the back end of the ready queue.
The ready queue is maintained as a circular queue, so Wipeacesses have had
a turn, then the scheduler gives the first process anaitmerand so on.
RR scheduling can give the effect of all processiraring the CPU equally,
although the average wait time can be longer tharh wiher scheduling
algorithms. In the following example the average wait tis®.66 ms.

| Process | Burst Time
| P1 | 24
‘ P2 | 3
‘ P3 | 3
| |
‘ Py = P3 Py By B D,] Py |
0 4 7 10 14 18 22 26 3

e The performance of RR is sensitive to the time quantum sdleithe quantum
is large enough, then RR reduces to the FCFS algorithiris Wery small, then
each process gets 1/nth of the processor time and shaethequally.

« BUT, areal system invokes overhead for every context switchthansmaller
the time quantum the more context switches there are. (See Big below.)
Most modern systems use time quantum between 10 and 108eoalids, and
context switch times on the order of 10 microseconds, so thkeeadis small
relative to the time quantum.

v In general, turnaround time is minimized if most g@sses finish their next cpu burst
within one time quantum. For example, with three preeesof 10 ms bursts each, the
average turnaround time for 1 ms quantum is 29 fanti0 ms quantum it reduces to 20.

However, if it is made too large, then RR just degatesrto FCFS. A rule of thumb is
that 80% of CPU bursts should be smaller than the time quantum.

2.12.5.5 Multilevel Queue Scheduling

v When processes can be readily categorized, thenipheulseparate queues can be
established, each implementing whatever scheduliggrithm is most appropriate for
that type of job, and/or with different parametric adjiestis.

v' Scheduling must also be done between queues, thahésluling one queue to get time
relative to other queues. Two common options aretsgiiority (no job in a lower
priority queue runs until all higher priority queuare empty) and round-robin (each
gueue gets a time slice in turn, possibly of different sizes.)

v" Note that under this algorithm jobs cannot switchmfrqueue to queue - Once they are
assigned a queue, that is their queue until they finish

highest priority

]| T8 A TG mroeec b
| _ batch processes
LT__'EEIQ’I student processes

lowest priority

2.12.5.6 Multilevel Feedback-Queue Scheduling

v' Multilevel feedback queue scheduling is similar ttee ordinary multilevel queue
scheduling described above, except jobs may be mimesdone queue to another for a
variety of reasons:

o If the characteristics of a job change between @Réhsive and 1/O
intensive, then it may be appropriate to switch affolmn one queue to
another.

o Aging can also be incorporated, so that a job thatwsaited for a long
time can get bumped up into a higher priority queue for aewhil

v Some of the parameters which define one of these systemdencl

o The number of queues.

o The scheduling algorithm for each queue.

o The methods used to upgrade or demote processes from ometgueu
another. (Which may be different.)
o The method used to determine which queue a process entietlyini

A |
e quantum = 8 l—
e (R TRTTAIT
—_—
> gquantum = 18 il

I =
FCFS i

2.13 DEADLOCK

Definition: A process requests resources. If the resources aravadable at that time ,the
process enters a wait state. Waiting processgsnexer change state again because the
resources they have requested are held bgr ovaiting processes. This situation is called a
deadlock.

A process must request a resource before using it, and neastreésource after using it.

1. Request:If the request cannot be granted immediately thenrequesting process
must wait until it can acquire the resource.

2. Use:The process can operate on the resource

3. ReleaseThe process releases the resource.

2.13.1 Deadlock Characterization
Four Necessary conditions for a deadlock

1. Mutual exclusion: At least one resource must be held in a non sharmabtke. That is
only one process at a time can use the resourceother process requests that resource, the
requesting process must be delayed until the resource ¢érasdieased.

2. Hold and wait: A process must be holding at least one resourcevartohg to acquire
additional resources that are currently being held by giteeesses.

3. No preemption Resources cannot be preempted.

4. Circular wait: PO is waiting for a resource that is held by P1, £ Waiting for a
resource that is held by P2...Pn-1.

2.13.2 Resource-Allocation Graph
It is a Directed Graph with a set of vertices V and set of edges E.
V is partitioned into two types:
1. nodes P = {p1, p2,..pn}
2. Resource type R ={R1,R2,...Rm}

Pi -- >Rj - request => request edge
R
Rj-- \ S "2 >pj-allocated => assignment edge.
- -, /1 . .
Pi is : denoted as a circle and Rj as a
square. @
Rj may have 7 : more than one instance represented
as a dot with in the ra|] square.
R4
Sets * P,.R and E.
P={ P1,P2,P3}

R = {R1,R2,R3,R4}
E= {P1->R1, P2->R3, R1->P2, R2->P1, R3->P3}

Resource instances

One instance of resource type R1,Two instanteresource type R2,0ne instance of
resource type R3,Three instances of resource type R4.

Process states

Process P1 is holding an instance of resodype R2, and is waiting for an instance of
resource type R1.Resource Allocation Graph with a deadlock

Process P2 is holding an instance of R1 and R2sanditing for an instance of resource
type R3.Process P3 is holding an instance of R3.

P1->R1->P2->R3->P3->R2->P1
P2->R3->P3->R2->P2

Methods for handling Deadlocks

1. Deadlock Prevention
5l R2
2. Deadlock /\ e AN Avoidance
3. Deadlock Detection and Recovery
R3 \/ ol)
R4
2.13.3 Deadlock - Prevention:
s This ensures that the system never

enters the deadlock state.

% Deadlock prevention is a set of methods for ensuttiag at least one of the necessary
conditions cannot hold.

% By ensuring that at least one of these conditioasnot hold, we can prevent the
occurrence of a deadlock.

1. Denying Mutual exclusion
= Mutual exclusion condition must hold for non-sharable ueses.
= Printer cannot be shared simultaneously shared by prpxargsses.

= sharable resource - example Read-only files.

= |f several processes attempt to open a read-delhafithe same time, they
can be granted simultaneous access to the file.

= A process never needs to wait for a sharable resource.

2. Denying Hold and wait

(0]

(0]

Whenever a process requests a resource, it does not holdhanyesburce.

One technique that can be used requires @acbess to request and be
allocated

all its resources before it begins execution.

Another technique is before it can request any additiosalrees, it must release
all the resources that it is currently allocated.

» These techniques have two main disadvantages :

= First, resource utilization may be low, sincengnaof the resources
may be allocated but unused for a long time.

= We must request all resources at the beginning for bothcplisto

= starvation is possible.

3. Denying No preemption

>

>
>

If a Process is holding some resources arglests another resource that
cannot be immediately allocated to it. (that is tmecpss must wait), then all
resources currently being held are preempted.(ALLOW PREHUIR)

These resources are implicitly released.

The process will be restarted only when it can regain itseslources.

4. Denying Circular wait

>

>

Impose a total ordering of all resource typand allow each process to
request for resources in an increasing order of enuroerati

o Let R={R1,R2,...Rm} be the set of resource types.

Assign to each resource type a unique integer number.

> If the set of resource types R includes tapedrives, diskslend printers.

F(tapedrive)=1,
F(diskdrive)=5,
F(Printer)=12.

» Each process can request
Unsafe
2.13.4 Deadlock oo
v" Deadlock /
OS be given
information

a process will

resources only inin@neasing order of

enumeration.

Avoidance:

avoidance request that the
in advance additional
concerning which resources
request and useduring its

life time. With this information it can be decidedrfeach request whether or not the

process should wait.

v' To decide whether the current request can be satisfi must be delayed, a system must
consider the resources currently available, tasources currently allocated to each
process and future requests and releases of each process.

Safe State

X/
°

*
°e

°

°

A deadlock is an unsafe state.
Not all unsafe states are dead locks

An unsafe state may lead to a dead lock

A state is safe if the system can allocate resouresch process in some order
and still avoid a dead lock.

Two algorithms are used for deadlock avoidance namely;

1. Resource Allocation Graph Algorithm - single instance of a resource type.

2. Banker’s Algorithm — several instances of a resource type.

Resource allocation graph algorithm

¢ Claim edge -Claim edge Pi---> Rj indicates that process Pi mempest resource Rj at
some time, represented by a dashed directed edge.

e When process Pi request resource Rj, the claim Bdge Rj is converted to a request
edge.

e Similarly, when a resource Rj is released by Pi thsighment edge Rj -> Pi is
reconverted to a claim edge Pi -> Rj

Banker's algorithm
Available: indicates the number of available resources of each type.
Max: Max[i, j]J=k then process Pi may request at most k irstan€resource type Rj

Allocation : Allocation[i. j]=k, then process Pi is currentlgllocated K instances of
resource type Rj

Need :if Need[i, j]=k then process Pi may need K more instances anfroestype R]
Need [i, j]J=Max{i, j]-Allocation[i, j]
Safety algorithm
1. Initialize work := available and Finish [i]:=false fer1i,2,3 .. n
2. Find an i such that both
a. Finishli]=false
b. Needi<= Work
if no such i exists, goto step 4
3. work :=work+ allocation i;
Finishl[i]:=true
goto step 2
4. If finish[i]=true for all i, then the system is in a safdesta
Resource Request Algorithm
Let Requesti be the request from process Pi for resources.

1. If Requesti<= Needi goto step2, otherwise raisesrror condition, since the
process has exceeded its maximum claim.

2. If Requesti <= Available, goto step3, otherwise Pstmait, since the resources are
not available.

3. Available := Availabe-Requesti;
Allocationi := Allocationi + Requesti
Needi := Needi - Requesti;

Now apply the safety algorithm to check whether this new staggfasor not.

If it is safe then the request from process Pi can be granted

2.13.5 Deadlock Detection
0] Single
If all

then we can

that use a varian
wait for graph.

Resource

Wait for S

@

i) Several Instance; p, e
| o
Available
each type
] Bt
Allocation : P4

currently allocated to

Request :Current request of each process

» F3

instance of each resource type

resources have only a single instance,
define a deadlock detection algorithm
of resource-allocation graphedalh

Allocation Graph

of a resource type

Number of available resources of

number of resources of each type
each process

If Request [i,j]=k, then process Pi is requesting K more mt&ts of resource type R.

1. Initialize work := available
Finish[i]=false, otherwise finish [i]:=true
2. Find an index i such that both
a. Finish[i]=false
b. Requesti<=work
if no such i exists go to step4.
3. Work:=work+allocationi
Finish[i]:=true
goto step2
4. If finish[i]=false
then process Pi is deadlocked
2.13.6 Deadlock Recovery
1. Process Termination
1. Abort all deadlocked processes.

2. Abort one deadlocked process at a timel @ié deadlock cycle is eliminated.
After each process is aborted , a deadlockectien algorithm must be invoked to
determine where any process is still dead locked.

2. Resource Preemption

Preemptive some resources from process amel tiese resources to other processes until
the deadlock cycle is broken.

I. Selecting a victim: which resources and which process are to be preempted.

ii. Rollback: if we preempt a resource from a process it cargontinue with its
normal execution. It is missing some needed resowee must rollback the process to
some safe state, and restart it from that state.

lii. Starvation : How can we guarantee that resources will not alwaggpreempted
from the same process.

UNIT - Il STORAGE MANAGEMENT

Memory Management. Main Memory, Contiguous memory allocabn, Segmentatior
Paging, 32 and 64 bit architecture. Examples: VirtualMemory -Demand paging, Page
replacement- Allocation, Thrashing; Allocating Kernal Memory , OS Examples.

3.1 MEMORY MANAGEMENT: BACKGROUND
v" In general, to rum a program, it must be brought into memory.

v" Input queue- collection of processes on the disk that emting to be brought
into memory to run the program.

v' User programs go through several steps before being run

Address binding: Mapping of instructions and data from one addrto another
address in memory.

Three different stages of binding:
1. Compile time: Must generate absolute code if memory location is knownian. p
2. Load time: Must generate relocatable code if memory location is nmawR at
compile time

3. Execution time: Need hardware support for address maps (e.g., babsdinain
registers).

Logical vs. Physical Address Space

Logical address— generated by the CPU;salreferred to as “virtual addres$

Physical address- address seen by the memory unit.

¢ Logical and physical addresses are the same in ¢emmpie and load-time
address-binding schemes

logical
address

relocation
register

ey

by sical
address

246

R 14346

MWANIL

s-binding scheme

3.1.1 Memory-Management Unit (MMU)

% Logica
I
(virtua
l) and
physic
al
addres
M= ory” SES
differ
in
execut
ion-
time
addres

v' It is a hardware device that maps virtual / Logical addregshyeical address.

v In this scheme, the relocation register‘s value is added to Logical address generated by

a user process.

v' The user program deals with logical addresses; it never lsea=d physical

addresses

% Logical address range: 0 to max

« Physical address range: R+0 to R+max, wherev&ue in relocation.

Dynamic relocation using relocation register

Dynamic Loading
v' Through this, the routine is not loaded until it is called.
0 Better memory-space utilization; unused routine is neastdd
o Useful when large amounts of code are needed to handleuafridg occurring cases

o0 No special support from the operating system is reqguimplemented through
program design

Dynamic Linking
v Linking postponed until execution time & is particularlyefid for libraries

v Small piece of code called stub, used toatkvcthe appropriate memory resident
library routine or function.

v' Stub replaces itself with the address of the routine, andisethe routine

v' Operating system needed to check if routine is otgsses Memory addresses Shared
libraries.

v Programs linked before the new library was installed will cargiusing the older library.

3.2 CONTIGUOUS MEMORY ALLOCATION
Each process is contained in a single contiguous sectioerabny.
There are two methods namely :
% Fixed - Partition Method
% Variable - Partition Method
Fixed - Partition Method :

e Divide memory into fixed size partitions, wheeach partition has exactly
one process.

e The drawback is memory space unused within partition is
wasted.(eg.when process size < partition size)

Variable-partition method:

v' Divide memory into variable size partitions, depegdupon the size of the incoming
process.

e When a process terminates, the partition besonavailable for another
process.

e As processes complete and leave they create holes in thenemaory.

e Hole - block of available memory; holes of various size scattered throughout
memory.

Dynamic Storage-Allocation Problem:
How to satisfy a request of size =n‘ from a list of free holes?

Solution:

>

X/
*

First-fit: Allocate the first hole that is big enough.

L)

e

*

Best-fit: Allocate the smallest hole that is big enoughshagearch entire list,
unless ordered by size. Produces the smallest leftover hole.

% Worst-fit: Allocate the largest hole; must also search eniste IProduces the
largest leftover hole.

NOTE: First-fit and best-fit are better than worst-fit in terohspeed and storage utilization

Fragmentation

procass 5

process 5

process 9

process 8

process 10

process 2

process 2 process 2 process 2

o,

% External Fragmentation — This takes place when enough total memoryespac
exists to satisfy a request, but it is nohtiguous i.e, storage is fragmented into a
large number of small holes scattered throughout the maimonye

% Internal Fragmentation — Allocated memory may be slightly larger than esfed
memory.

Example:
hole = 184 bytes

Process size = 182 bytes.

We are left with a hole of 2 bytes.

Solutions:
» Coalescing ; o Merge the
adjacent holes e e together.
> Compaction: subroutine stack Move all
processes toward one end of
memory, hole : towards
syt
other end of table memory,
producing one large hole
of available st memory.
. . rTiEin .
This scheme s program expensive
as it can be don if relocation
is dynamic and - done at
execution time. T "
oozl addras:s
» Permit the logical address

space of a process to be non-contiguous. Thisachieved through two memory
management schemes namedyging and segmentation.

3.3 SEGMENTATION
v' Memory-management scheme that supports user view of memory
v' A program is a collection of segments.

v' A segment is a logical unit such as: Main prograroc®@dure, Function, Method, Object,
Local variables, global variables, Common block, Stack, Sytabte, arrays.

User’s View of Program

Logical View of Segmentation

Segmentation Hardware

v' Logical address
consists of a two
tuple :

= <Se
gm

ent-

nu

mb

er,

offs
et>

v' Segment table maps two-dimensional physical addresses; each tabletersry

= Base - contains the starting physical address where gsbgments
reside in memory

= Limit — specifies the length of the segment

v' Segment-table base register (STBR) points todpment table‘s location in memory

v' Segment-table length register (STLR) indicates numberegiments used by a program;
» Segment number=s* is legal, if s < STLR

v Relocation.

= dynamic
= by segment table

v Sharing.
= shared segments
= same segment number

v Allocation.
= first fit/best fit
= external fragmentation

v Protection: With each entry in segment table associate:
= validation bit =0 illegal segment
= read/write/execute privileges

Protection bits associated with segments; code sharingsoat segment level

v' Since segments vary in length, memory allocatis a dynamic storage-allocation
problem

v' A segmentation example is shown in the following diagram

R

Address s Tirmit |bane
Translation
Sogrmort
= = tabl=

Scheme cru |eErrE

\/ trap; addressing arror physical marmaory

Example

e =i 3 --\.__x
-
o T
r FuBrcutne stach S
.-f -.."'.
,"I zoxgdrraan L & I".I
sy beesd
saginsnt o Laflo
livrii L [EFE]
Suri =2t 4 LA I IR T VAR
| ! 1 A0 GE
"\ rras=in B = S DR R MLk
R |2 I PRI r Wl orran A
. / £ B B ETATRI W AT
\K s o sagimEnt @kl
samsnt 1 segment 2
logiczal addicess Sspiooe
."'.-.---- o -
- .'_
.-/’ .\.
r'- ‘\.
! .
ercditor 1
s anl o
N data 1 / . basze
-, s o 43067
: K =
L sogment 1 1 izt]
T N sagrment akle
e o— =T process i
cojical mormory
pracess £
.-"". .."\
cl k1
’ .
cditor K
EERCTa T g =Ty DLW
h data = J." |rr'|1___ Lw.n.-r-.t
-, 5] FarES A
. ssgmant 1 e 1 ORSa | anonE
S sasmsant tanls

colical memaory
e Es "‘.2

| Sl Tl .r'-'-:,

1400

megrmant O
s Iy)

PRI)

EISIR I RRESC B e

IR0

W

Sofim=nt 2
A TR0

L el 3

ST

F00

=eciimet 1

(=g e]
Ihrvelzal S

43052
sdilor

R4
' data 1

TETTE

QOI03
data =

SOGEEE

phyesical marmary

Another advantage of segmentation involves the sharingd# or data.

% Each process has a segment table associated withidty the dispatcher uses to define
the hardware segment table when this process is given the CPU.

s Segments are shared when entries in the esggtables of two different processes
point to the same physical location.

Segmentation with paging

% The IBM OS/2.32 bit version is an operating system rgniwin top of the Intel 386
architecture. The 386 user segmentation with pagimgrfemory management. The
maximum number of segments per process is 16 KB, acld ®gment can be as large as
4 gigabytes.

% The local-address space of a process is divided into twitiqgrast
% The first partition consists of up to 8 KB segments that avafarito that process.

% The second partition consists of up to 8KB segm#rasare shared among all the
processes.

v Information about the first partition is keph the local descriptor table (LDT),
information about the second partition is kept in the gloleaktriptor table (GDT).

v' Each entry in the LDT and GDT consist of 8 bytes, wighaded information about a
particular segment including the base location and leofyithe segment.

v' The logical address is a pair (selector, offset) where thetsele al6-bit number:

S g p
13 1 2

v' Where s designates the segment number,digaies whether the segment is in the
GDT or LDT, and p deals with protection.

v' The offset is a 32-bit number specifying the lomatof the byte within the segment in
guestion.

v The base and limit information about the nsegt in question are used to generate
a linear-address.

v First, the limit is used to check for address validif the address is not valid, a memory
fault is generated, resulting in a trap to the ojegasystem. If it is valid, then the value
of the offset is added to the value of the basayltieg in a 32-bit linear address. This
address is then translated into a physical address.

v' The linear address is divided into a page numbasisting of 20 bits, and a page offset
consisting of 12 bits. Since we page the p&gde, the page number is further
divided into a 10-bit page directory pointard a 10-bit page table pointer. The
logical address is as follows.

S g p
10 10 12

v To improve the efficiency of physical memory useteln386 page tables can be
swapped to disk. In this case, an invalid bit isdusethe page directory entry to
indicate whether the table to which the entry is pointing re@mory or on disk.

v'If the table is on disk, the operating system canthe other 31 bits to specify the disk
location of the table; the table then can be brought intoangon demand.

logical address selector oftaet

|

descriptor tahle

segment
descriptor

page frame
linear address divectory page oftaet

phorsical address

page directory

page tabe

directory ety

page directory

base register

page table entry

3.3 PAGING

v It is a memory management scheme that permitstiiisiqgal address space of a process
to be noncontiguous.

v It avoids the considerable problem of fitting therying size memory chunks on to the
backing store.

(i) Basic Method:
% Divide logical memory into blocks of same sizeleht‘pages”.
% Divide physical memory into fixedized blocks called “frames”
s Page size is a power of 2, between 512 bytes and 16MB.

Address Translation Scheme

Address generated by CPU(logical address) is divided into:

Page number (p)- used as an index into a page table which contains &ddress of
each page in physical memory

Page offset (d)- combined with base address to define the physical address i.e.,

Physical address = base address + offset

} f
gy lcal v slcal -
addrass addrass FODOQ .. . 0000

S . s R

F 3
0T oo D10
p {
- I
physical
ITHEFTICTHY
page takbla
Fig 3.3.1 Paging Hardware
frame
i bear .
page O]
|2ty n) o o —

page 1 " 1| page D

page 2 ? 2

_ =) e
page 3 nage tanla 3| page 2
logical 4| page
Ty

&

5]
¥ paga 3
Ehysical
MEmory

Figure 3.3.2 Paging model of logical and physical memory

Paging example for a 32-byte memory with 4-byte pages
Page size = 4 bytes
Physical memory size = 32 bytes i.e (4 X 8 = 32 so, 8 pages)
Logical address =0° maps to physical address 20 i.e ((5 X 4) +0)

Where Frame no =5, Page size =4, Offset =0
% a
-1 a 4]
= J [¥
s | = v
4 ~': g
: .:1: II([=3 l;:: ::I =15) =3
H-
Nlosoical rraezrmory 1
:J:-
= "l-
Pa]
h

pet=)

Allocation

physical rmermor g

% When a process arrives into the system, its size (exprespades) is examined.

>

% Each page of process needs tmame. Thus if the process requires =n‘ pages, at least =n°
frames must be available in memory.

°

If =n‘ frames are available, they are allocated to this arriving process.

X/
°

The 1st page of the process is loaded into onehefallocated frames & the frame
number is put into the page table.

X3

* Repeat the above step for the next pages & so on.

Frame table:

% It is used to determine which frames are allocatduch frames are available, how
many total frames are there, and so on.(ie) It containeaalhformation about the frames
in the physical memory.

a)Before Allocation b) After Allocation

free-frame list frea-frame list
14 15
Y 13 ° 13 |page 1
18
a0y 14 14 [page 0O
15
e 15 & 15
page 0 16 page O 16
page 1 page 1 I
page 2 17 page 2 i7
page 3 page 3
new process 18 N Drocess 18 pago |
19 al1a 19
:
20 218 20 |page 3
3[20]
21 nesw-process page table 29
{a} =}

Fig 3.3 Page Allocation Table
(i) Hardware implementation of Page Table
% This can be done in several ways :
0 Using PTBR
o TLB
% The simplest case is Page-table base register (PTBR)indanto point the page table.
« TLB (Translation Look-aside Buffer)
o ltis a fast lookup hardware cache.
o It contains the recently or frequently used page tableesntri
o It has two parts: Key (tag) & Value.
0 More expensive.
Paging Hardware with TLB

% When a logical address is generated by CPU, its page numbesénfad to TLB.

L)

X/
°

TLB hit: If the page number is found, its frame number is ediately available & is
used to access memory

K/
°e

TLB miss: If the page number is not in the TLB, a memory refiee to the page table
must be made.

% Hit ratio: Percentage of times that a particular page is fanrtle TLB. For example
hit ratio is 80% means that the desired page number in the TRE®4s0f the time.

« Effective Access Time:

= Assume hit ratio is 80%. If it takes 20ns to seartB & 100ns to access memory,
then the memory access takes 120ns(TLB hit)

= If we fail to find page no. in TLB (20ns), then we mast access memory for page
table (100ns) & then access the desired byte in memoryg)l.00

Therefore Total = 20 + 100 + 100
=220 ns(TLB miss).

Then Effective Access Time (EAT) = 0.80 X (120 + 0.20) X 220.
=140 ns.

page tare
nrTiber rmbeEn

TLE hil

phys=ical
Aclel s
*

TR

TLE mis= L

(i) Memory s Protection
L physical
MEmMary

% Memory
protection

oage 1abls
implemented by associating protection bit with each frame
« Valid-invalid bit attached to each entry in the page table:

e “valid (v)” indicates that the associated page is in the process* logical address
space, and is thus a legal page

e “invalid (1)” indicates that the page is not in the process‘ logical address space.

Fig 3.4 Memory Protection

(iv) Structures of the Page Table

[
1
= o O
[wlwlolwla] Irzrnies riorrikeer walictk—rrvahiad it
paga o \ j = prangies 1
[=2 L4
Page 1 R | 4 page =
=2 4 W
el oy =
B2g a e L)
PAage = <4 8 W =
= o W
preaupe & | 0 | rd e S
0 = ra O I
10 Al8 | e S b = e o
12287 frowiger toukalas t z
=] page o
-
-
precies ra

a) Hierarchical Paging

b) Hashed Page Tables

c) Inverted Page Tables
a) Hierarchical Paging

Break up the Page table into smaller pieces. Bedétise page table is too large then it is quit
difficult to search the page number.

Example: “Two-Level Paging

Address- Pi Pz _ Translation Scheme

Address- translation scheme for a two-
level 32-bit paging architecture

logical address

P

o

=4

outer page
table d {

page of
page table

It requires more
number of memory accesses, when the number of levels is @ttreas

(b) Hashed Page Tables
Each entry in hash table contains a linked list of elembatash to the same location.
Each entry consists of;
(a) Virtual page numbers
(b) Value of mapped page frame.
(c) Pointer to the next element in the linked list.
Working Procedure:
e The virtual page number in the virtual address is hashedhathash table.
e Virtual page number is compared to field (a) in the 1st eleméhe linked list.

e If there is a match, the corresponding page frameéd({b)) is used to form the desired
physical address.

e If there is no match, subsequent entries in theetinkst are searched for a matching
virtual page number.

Clustered page table:

R

% It is a variation of hashed page table & is simtlarhashed page table except that
each entry in the hash table refers to several pages fadinea single page.

physical
logical address | 1 address
o]] i ot

i T e
T D physical
L function = |ags| ']]| JEA I PREE memary
hash table

(c)Inverted Page Table

% It has one entry for each real page (frame) of mgr8oeach entry consists of the
virtual address of the page stored in that real argntocation, with information
about the process that owns that page. So, only one page tabtled system.

% When a memory reference occurs, part of the viradaress, consisting of <Process-id,

logical

acdress [* I;:';‘i.fjf‘l;; E:I
s i = physical
rJI)U pld | p | d | |_I._|L|—r- rn-.'—:-rnt:-ry

saarch l }i

pid | p

prercge lakile
Page-no> is presented to the memory sub-system.
% Then the inverted page table is searched for match:
(i) If a match is found, then the physical address is gesterat
(i) If no match is found, then an illegal address accesbéas attempted.
e Merit: Reduce the amount of memory needed.

e Demerit: Improve the amount of time needed to search thie taben a
page reference occurs.

(v) Shared Pages
% One advantage of paging is the possibility of sharing commde.c
= Shared code

o0 One copy of read-only (reentrant) code shared ampoocesses (i.e., text
editors, compilers, window systems).

0 Shared code must appear in same location in thealogddress space of
all processes

= Reentrant code (Pure code)Non-self modifying code. If the code is reentrantnthe
it never changes during execution. Thus two or mooegsses can execute the same
code at the same time.

= Private code and data Each process keeps a separate copy of the code and data.

3.5 VIRTUAL MEMORY

v It is a technique that allows the execution pfocesses that may not be
completely in main memory.

v' Advantages:
o Allows the program that can be larger than the physical memory.
0 Separation of user logical memory from physical memory
o Allows processes to easily share files & address space.
o Allows for more efficient process creation.
v Virtual memory can be implemented using
o Demand paging
o Demand segmentation
Fig 3.5 Virtual Memory That is Larger than Physical Memory
Demand Paging

prage &

I
| |
JOBOC

s Yy !
mop B S — o L——

a0 el Physical
At Ty

It is similar to a paging system with swapping.
Demand Paging- Bring a page into memory only when it is needed

v' To execute a process, swap that entire procgssmemory. Rather than swapping
the entire process into memory however, we use Lazy Swapper

Lazy Swapper- Never swaps a page into memory unless that page will be needed.
v' Advantages
Less I/O needed
Less memory needed
Faster response

More users

Basic Concepts:

% Instead of swapping in the whole processes, gager brings only those necessary
pages into memory. Thus,

o It avoids reading into memory pages that will not be used apyw
0 Reduce the swap time.
0 Reduce the amount of physical memory needed.

% To differentiate between those pages that are inange# those that are on the disk we
use the Valid-Invalid bit

Valid-Invalid bit
% A valid - invalid bit is associated with each page table entry.
% Valid associated page is in memory.
% In-Valid
invalid page
valid page but is currently on the disk.
Page Fault
% Access to a page marked invalid causes a page fault trap.
1. Determine whether the reference is a valid or invalid meaagss
2. a) If the reference is invalid then terminate the psoces
b) If the reference is valid then the page has not been gegbt into main memory.
3. Find a free frame.
4. Read the desired page into the newly allocated frame.
5. Reset the page table to indicate that the page is now in memory
6. Restart the instruction that was interrupted .

Pure demand paging

% Never bring a page into memory until it is requiréde could start a process with no
pages in memory.

®,

% When the OS sets the instruction pointer to therisituction of the process, which is
on the non-memory resident page, then the process imnhethatés for the page.

% After this page is bought into the memory, the pssceontinue to execute, faulting as
necessary until every page that it needs is in memory.

Performance of demand paging

Let p be the probability of a page fault0 p 1
Effective Access Time (EAT)
EAT =(1-p)x ma+ px page fault time.
Where ma memory access, p Probability of page fault (0O=p =1)
% The memory access time denoted ma is in the range 10 to 200 ns.
% If there are no page faults then EAT = ma.

s To compute effective access time, we must know how ntinoh is needed to service a
page fault.

X4

A page fault causes the following sequence to occur:

*,

Trap to the OS
Save the user registers and process state.
Determine that the interrupt was a page fault.

Check whether the reference was legal and find the locatmagefon disk.

a > W bpoE

Read the page from disk to free frame.
a. Wait in a queue until read request is serviced.
b. Wait for seek time and latency time.
c. Transfer the page from disk to free frame.
6. While waiting ,allocate CPU to some other user.
7. Interrupt from disk.
8. Save registers and process state for other users.
9. Determine that the interrupt was from disk.
10. Reset the page table to indicate that the page is how inrnemo
11. Wait for CPU to be allocated to this process again.
3.6 PAGE REPLACEMENT
v If no frames are free, we could find one that is not curreeilygoused & free it.

v We can free a frame by writing its contents to swagice & changing the page table to
indicate that the page is no longer in memory.

v' Then we can use that freed frame to hold the page for whichdleespifaulted.
Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame

- If there is a free frame , then use it.

- If there is no free frame, use a page asghent algorithm to select a victim

frame

- Write the victim page to the disk, change the page & franestatcordingly.

3. Read the desired page into the (new) free frame. Update thampadrame tables.

4. Restart the process

Modify (dirty) bit:

% ltindicates that any word or byte in the page is modified.

% When we select a page for replacement, we examine its motify bi

o If the bit is set, we know that the page has been fiedd& in this case we must

write that page to the disk.

o |If the bit is not set, then if the copy of the page the disk has not been
overwritten, then we can avoid writing the memory eam the disk as it is

already there.

Page Replacement Algorithms

frarme valid=invalid bit

s ol
wictim

@

.--'—'T-o"—':_'_"'ﬂ_'_

. [
witirm

|——==

changs
0O i tex irwvalicd
f vl
{a) f
resat pagea
table for
page tabla S e

.?ﬂhg%
— swap
dasired

page in

physical
[RR=Tu =Tt

. FIFO Page Replacement

. Optimal Page Replacement

. LRU Approximation Page Replacement

1
2
3. LRU Page Replacement
4
5

. Counting-Based Page Replacement

o

» We evaluate an algorithm by

running it

on part

icular string of memory

references & computing the number of page faulte 3iing of memory reference is

called a reference string. The algorithm that ptesiless number of page faults is
termed to be a good one.

s As the number of available frames increaseshe number of page faults
decreases. This is shown in the following graph:

(a) FIFO page replacement algorithm

T '}
a o om0
T T

number ol page faulls

LI E N
T

1 1 1
1 2 3 4 5 &
nurnbar of frames

0,

% Replace the oldest page.

% This algorithm associates with each page ,the time when thatvpes brought in.
s Example:

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

No.of available frames = 3 (3 pages can be in memory at a Em@qcess)

referance string

7 0 1 2 0 3 0 4 2 3
E B B B 2l [2] [a [4 [a
o o o al 2| |2 |2 |2
B R E 1] [o] [0 [0 |3

page frames

o

3 2 1 2 0o 1 7 0 1
o [o & B B
T O 1| |o |e
3 |2 2] [2 [

[of

Drawback:

% FIFO page replacement algorithm =s performance is not alga
% To illustrate this, consider the following example:
Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
If No.of available frames -= 3 then the no.of page faults =9
If No.of available frames =4 then the no.of page faults =10

% Here the no. of page faults increases when the naofes increases .This is called as
Belady’s Anomaly.

(b) Optimal page replacement algorithm
Replace the page that will not be used for the longest peribmef
Example:

reference string

2 0 3 0 4 2 353 0 2 2 1

7 0 1 2
7| 7] 7] 2]
1| [

page framas

R A
w|o|m]
3
=
=~
==
—

o
2
0
3

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1
No.of available frames = 3
Drawback:
e Itis difficult to implement as it requires future knowleddehe reference string.
(c) LRU(Least Recently Used) page replacement algorithm
% Replace the page that has not been used for the longest pietiod.
Example:

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

No.of available frames = 3

referenca string
i 01 2 0 3 0 4 2 3 0 3 2 1 2 ¢ 1 7 0 1

F EEE [B al [4 a4 o 1 1 1
oo o o oflo 38 3 3 0 0
11 3 3l 2 2 2 o 2 7

page frames

No of Page Faults :12
LRU page replacement can be implemented using
1. Counters

e Every page table entry has a time-of-uséd fiend a clock or counter is associated
with the CPU.

e The counter or clock is incremented for every memory rebéere
e Each time a page is referenced , copy the counter into theofiuse field.

e When a page needs to be replaced, replaee ptge with the smallest counter
value.

2. Stack
e Keep a stack of page numbers

e Whenever a page is referenced, remove the pagetfre stack and put it on top of the
stack.

referenocse strimc
=1 - [@] ra 1 o 1 = A1 = - 1 =

=2 Fad
=1
1 =
o 1
Fal L]
=1 =
=tack =tack
Deforse =l
E=§ =

e When a page needs to be replaced, replace the pagest at the bottom of the
stack.(LRU page).

Use of A Stack to Record The Most Recent Page References

(d) LRU Approximation Page Replacement

(ii)

% Reference bit
¢ With each page associate a reference bit, initially setto 0
e When page is referenced, the bitis setto 1

% When a page needs to be replaced, replace the page whoseceefetés O

% The order of use is not known , but we know which pagese used and which were not
used.

Additional Reference Bits Algorithm
s Keep an 8-bit byte for each page in a table in memory.
s Atregular intervals , a timer interrupt transfers contraD&.

% The OS shifts reference bit for each page into higher- dnitishifting the other bits right
1 bit and discarding the lower-order bit.

Example:
e |If reference bit is 00000000 then the page has not been us@dirte periods.

e |If reference bit is 11111111 then the page hasn lbsed atleast once each time
period.

e |If the reference bit of page 1 is 11000100 and fage01110111 then page 2 is
the LRU page.

Second Chance Algorithm

% Basic algorithm is FIFO

% When a page has been selected , check its reference bit.
e If O proceed to replace the page

e If 1 give the page a second chance and move on to the next &feO p

X/
°e

When a page gets a second chance, its meterbit is cleared and arrival time is
reset to current time.

% Hence a second chance page will not be replaced until ellpetbes are replaced.

(i) Enhanced Second Chance Algorithm

s Consider both reference bit and modify bit
s There are four possible classes

1. (0,0)- neither recently used nor modified Best page to replace

2. (0,1) - not recently used but modified page has te whitten out before

replacement.
3. (1,0) - recently used but not modified page may be used again

4. (1,1) - recently used and modified page may be agath and page has to be
written to disk.

(e) Counting-Based Page Replacement
s Keep a counter of the number of references that have beentmashch page

Least Frequently Used (LFU)Algorithm: replaces page withieshaount

Most Frequently Used (MFU)Algorithm: replaces page with sargmunt

s It is based on the argument that the pagh the smallest count was probably just
brought in and has yet to be used.

3.7 THRASHING
v" High paging activity is called thrashing.
v If a process does not have enough pages, the page-faultvaig nsgh.

v" This leads to:

o low CPU utilization
0 operating system thinks that it

multiprogramming
o another process is added to the system
v" When the CPU uutilization is low, the OS ince=as the degree of

multiprogramming.

v If global replacement is used then as processes e main memory they tend to steal
frames belonging to other processes.

v' Eventually all processes will not have enough frarard hence the page fault rate
becomes very high.

v' Thus swapping in and swapping out of pages only tgkase. This is the cause of
thrashing.

needs to rease the degree of

| thrashing

CPU ytiization

deagres of multiprogramirminag

v" To limit thrashing, we can use a local replacement algorithm.
v' To prevent thrashing, there are two methods namely ,
e Working Set Strategy
e Page Fault Frequency
1. Working-Set Strategy
« Itis based on the assumption of the model of locality.
% Locality is defined as the set of pages actively used togethe

Working set is the set of pages in the most recqrdge references is the working set
window.

= if too small, it will not encompass entire locality
= if too large ,it will encompass several localities
= if = itwill encompass entire program

page reference table

L,E2B1SYTFTITE1I6E623412534443434441 3234443444,

|

FI_
]

WS(f,) — 11.2,5.6,7} WS (i) — {94}

H
L.,

% D= WSSI

imcresss nurker
ol TELITI &S
npEper boundd

pagefeLtrete

lowwar bEraunc
cecrease numbeaer
! Mreirmiesss

W
SSi is the working set size for process i.

= Disthe total demand of frames

R/

¢ if D > m then Thrashing will occur.

2. Page-Fault Frequency Scheme

% If actual rate too low, process loses frame

% If actual rate too high, process gains frame.

Other Issues
Prepaging
= To reduce the large number of page faults that occurs atspsiagup
= Prepage all or some of the pages a process will need, beforar¢heferenced
= But if prepaged pages are unused, I/O and memory are wasted
Page Size
Page size selection must take into consideration:
e fragmentation
e table size
e /O overhead
e locality
TLB Reach
e TLB Reach - The amount of memory accessible from the TLB
e TLB Reach = (TLB Size) X (Page Size)
e |deally, the working set of each process is stored in the TLB.
e Otherwise there is a high degree of page faults.

e Increase the Page Size. This may lead to an incieasagmentation as not all
applications require a large page size

e Provide Multiple Page Sizes. This allows apmtians that require larger
page sizes the opportunity to use them without an incredsegmentation.

I/O interlock

= Pages must sometimes be locked into memory

= Consider I/0. Pages that are used for copynfile from a device must be locked
from being selected for eviction by a page replacemeoritaig.

UNIT - IV I/O SYSTEMS

Mass-Storage Structure-Overview, Disk scheduling- Disk management; File System
Storage- File Concepts, Directory and Disk Structure, Sharing andProtection; File System
Implementation- File System Structure, Directory Strucure, Allocation Methods, Free
Space Management, I/O Systems.

4.1 MASS STORAGE STRUCTURE
Overview

v" One of the responsibilities of the operating system is tohgskardware efficiently.
v For the disk drives,

0 A fast access time and

o High disk bandwidth.
v" The access time has two major components;

v' The seek time is the time for the disk arm to mthes heads to the cylinder containing
the desired sector.

v' The rotational latency is the additional time wajtifor the disk to rotate the desired
sector to the disk head.

v' The disk bandwidth is the total number of bytes dfamed, divided by the total time
between the first request for service and the completitimedfst transfer.

v" We can improve both the access time and the bandwidth by tisidng.
v Servicing of disk I/O requests in a good order.

4.2 DISK SCHEDULING AND MANAGEMENT

4.2.1 Disk scheduling
4.2.1.1 FCFS Scheduling
4.2.1.2 SSTF (shortest-seek-time-first)Scheduling

Service all the requests close to the current Ipesition, before moving the head far away to
service other requests. That is selects the requitssthe minimum seek time from the current

queue = 98, 183, 37, 122, 14, 124, 85, 67
head starts at 53
O 14 37 B36567 g8 122124 183189
|]
|

head position

4.2.1.3 SCAN Scheduling

The disk head starts at one end of the disk, ancesmmward the other end, servicing requests as
it reaches each cylinder, until it gets to the other endeodlitk. At the other end, the direction of
head movement is reversed, and servicing contindesh&ad continuously scans back and forth
dqueuse = 98, 183, 37, 122, 14, 124, 85, 67

head starts at 53

o 14 37 536567 28 122124 183129
| I Ll
I

across the disk.

Elevator algorithm: Sometimes the SCAN algorithm is called as the elewatorithm, since
the disk arm behaves just like an elevator in #&ing, first servicing all the requests going up,
and then reversing to service requests the other way.

4.2.1.4 C-SCAN Scheduling

Variant of SCAN designed to provide a more uniform uiaie. It moves the head from one end
of the disk to the other, servicing requests aldmgvtay. When the head reaches the other end,
however, it immediately returns to the beginning of the,digthout servicing any requests

on the return trip.

Jueue = 93, 183, 37, 122, 14, 124, 65, 67
head starts at 53
o 14 37 536567 98 122124 183199
| |
|

4.2.1.5 LOOK Scheduling

Both SCAN and C-SCAN move the disk arm across thewidth of the disk. In this, the arm
goes only as far as the final request in each titmecThen, it reverses direction immediately,
without going all the way to the end of the disk.

queues 28, 183, 37, 122, 14, 124, &5, &7
head starts at 53

o 14 37 53I65a7 o8 122124 183 19C
| | | | 11 | 11 | |

4.2.2 Disk Management
Disk Formatting:
Low-level formatting or physical formatting:

v' Before a disk can store data, the sector is dividénl various partitions. This process is
called low-level formatting or physical formattinti.fills the disk with a special data
structure for each sector.

v" The data structure for a sector consists of
0 Header,
o Data area (usually 512 bytes in size), and
o Trailer.

v' The header and trailer contain information usedheydisk controller, such as a sector
number and an error-correcting code (ECC).

v' This formatting enables the manufacturer to
0 Test the disk and
0 Toinitialize the mapping from logical block numbers

v' To use a disk to hold files, the operating systeith r¢eds to record its own data
structures on the disk. It does so in two steps.

(@) The first step is Partition the disk into aremore groups of cylinders. Among the
partitions, one partition can hold a copy of the OS°‘s executable code, while another holds user
files.

(b) The second step is logical formatting .The ofjregasystem stores the initial file-
system data structures onto the disk. These datatwstes may include maps of free and
allocated space and an initial empty directory.

Boot Block:

v' For a computer to start running-for instance, whea fiowered up or rebooted-it needs
to have an initial program to run. This initial pragm is called bootstrap program & it
should be simple. It initializes all aspects of #ystem, from CPU registers to device
controllers and the contents of main memory, and thers shetoperating system.

v' To do its job, the bootstrap program
1. Finds the operating system kernel on disk,
2. Loads that kernel into memory, and
3. Jumps to an initial address to begin the operating-systenution.

Advantages:

1. ROM needs no initialization.

2. ltis at a fixed location that the processor start executing when powered up or
reset.

3. It cannot be infected by a computer virus. Since, ROM isaed

v' The full bootstrap program is stored in a partiticadled the boot blocks, at a fixed
location on the disk. A disk that has a boot partition is calledaod disk or system disk.

v The code in the boot ROM instructs the disk comgrotb read the boot blocks into
memory and then starts executing that code.

v Bootstrap loader: load the entire operating systemn a non-fixed location on disk, and
to start the operating system running.

Bad Blocks:
v" The disk with defected sector is called as bad block.

v' Depending on the disk and controller in use, thesekisl are handled in a variety of
ways;

Method 1: “Handled manually

= |f blocks go bad during normal operation, a special prograst fme run manually
to search for the bad blocks and to lock them awgdyedore. Data that resided on
the bad blocks usually are lost.

Method 2: “‘sector sparing or forwarding”

= The controller maintains a list of bad blocks oa thsk. Then the controller can
be told to replace each bad sector logically witle oh the spare sectors. This
scheme is known as sector sparing or forwarding.

v' A typical bad-sector transaction might be as follows:
1. The oper ating system tries to read logical block 87.
2. The controller calculates the ECC and finds that therssdbad.
3. It reports this finding to the operating system.

4. The next time that the system is rebooted, exiapcommand is run to tell the
controller to replace the bad sector with a spare.

5. After that, whenever the system requests logical block 87edjuest is translated into
the

replacement sector's address by the controller.

Method 3: “‘sector slipping”

v" For an example, suppose that logical block 17 besateective, and the first available
spare follows sector 202. Then, sector slipping woaldap all the sectors from 17 to
202,moving them all down one spot. That is, sector\26@ld be copied into the spare,
then sector 201 into 202, and then 200 into 201,sandn, until sector 18 is copied into
sector 19. Slipping the sectors in this way frees up the sfaeetor 18, so sector 17 can
be mapped to it.

4.3 FILE SYSTEM STORAGE
4.3.1 File Concept

v A file is a named collection of related infation that is recorded on secondary
storage.

v" From a user’s perspective, a file is the smallest allotment of logical secondary storage;
that is, data cannot be written to secondary storage unissariwithin a file.

v' Examples of files:
v' Atext file is a sequence of characters organized into lares jossibly pages).

v A source file is a sequence of subroutined &unctions, each of which is further
organized as declarations followed by executabkestants. An object file is a sequence
of bytes organized into blocks understandable by the system’s linker. An executable file
is a series of code sections that the loader can bring int@ryemd execute.

4.3.2 File Attributes

e Name: The symbolic file name is the only informatidkept in human
readable form.

e Identifier: This unique tag, usually a number identifies the filithin the file
system. It is the non-human readable name for the file.

e Type: This information is needed for those systems that supgdtetetit types.

e Location: This information is a pointer to a device and te kbcation of the file
on that device.

e Size: The current size of the file (in bytes, words ordig)and possibly the
maximum allowed size are included in this attribute.

e Protection: Access-control information determines who can doinggdvriting,
executing and so on.

e Time, date and user identification This information may be kept for
creation, last modification and last use. Thda&a can be useful for
protection, security and usage monitoring.

4.3.3 File Operations
+ Creating a file

+« Writing a file

% Reading a file

“ Repositioning within a file
% Deleting a file

% Truncating a file

4.3.4 File Types

File Type Usual Extension Function

executable exe, com, bin, or none Read to run machine langua
program

Object obj, o Compiled, machine language, 1
linked

Source code C, cc, java, pas,asm,a |Source code in various languages

Batch bat, sh Commands to the command interpre

Text txt, doc Textual data, documents

word processor | wp, tex, rrf, doc Various word-processor formats

Library lib, a, so, dll, mpeg, mov, | Libraries of routines for programmer

rm

print or view arc, zip, tar ASCIl or binary file in a
format for printing or viewing

Archive arc, zip, tar Related files grouped into one file,
sometimes compressed, for archiving ¢
storage

multimedia mpeg, mov, rm Binary file containing audio or A/V
information

4.4 FILE SHARING AND PROTECTION
1. MULTIPLE USERS:

v When an operating system accommodates multiples,ue issues of file sharing, file
naming and file protection become preeminent.

The system either can allow user to access thefilether users by default, or it may
require that a user specifically grant access to the file

v' These are the issues of access control and protection.

v To implementing sharing and protection, the systemstnmaintain more file and

directory attributes than a on a single-user system.

The owner is the user who may change attributes, gracess, and has the most control
over the file or directory.

The group attribute of a file is used to defingu@set of users who may share access to
the file.

Most systems implement owner attributes by managintjst of user names and
associated user identifiers (user Ids).

When a user logs in to the system, the authenticatiage determines the appropriate
user ID for the user. That user ID is associated walitlof user’s processes and threads.
When they need to be user readable, they areldtads back to the user name via
the user name list.

Likewise, group functionality can be implementedhasy/stem wide list of group names
and group identifiers.

Every user can be in one or more groups, dependiog wperating system design
decisions. The wuser’s group Ids is also included in every associated process and
thread.

2. Remote File System:

v

v

v

Networks allowed communications between remote computers.

Networking allows the sharing or resource spread wighcampus or even around the
world. User manually transfer files between machines via anagjtike ftp.

A distributed file system (DFS) in which remote dimgéts is visible from the local
machine.

The World Wide Web: A browser is needed to gain actesthe remote file and
separate operations (essentially a wrapper for ftp) ak togeansfer files.

a) The client-server Model:

Remote file systems allow a computer to a mount onenore file systems from one or
more remote machines.

A server can serve multiple clients, and &ntl can use multiple servers,
depending on the implementation details of a given clisetver facility.

Client identification is more difficult. Clientgan be specified by their network
name or other identifier, such as IP address, legetltan be spoofed (or imitate). An
unauthorized client can spoof the server into degidhat it is authorized, and the
unauthorized client could be allowed access.

b) Distributed Information systems:

Distributed information systems, also known as digted naming service, have been
devised to provide a unified access to the information mefdeemote computing.

Domain name system (DNS) provides host-nametoank address translations for
their entire Internet (including the World Wide WebBefore DNS was invented and
became widespread, files containing the same infeomavere sent via e-mail of ftp
between all networked hosts.

c) Failure Modes:

Redundant arrays of inexpensive disks (RAID) carnvegue the loss of a disk from
resulting in the loss of data.

Remote file system has more failure modes. By eabfithe complexity of networking system
and the required interactions between remote mashmany more problems can interfere with
the proper operation of remote file systems.

d) Consistency Semantics:

It is characterization of the system that specifies theasgos of multiple users accessing
a shared file simultaneously.

These semantics should specify when modifications of dataéyiser are observable by
other users.

The semantics are typically implemented as code with ldeystem.

A series of file accesses (that is reads and wrdgsjnpted by a user to the same file is
always enclosed between the open and close operations.

The series of access between the open and close opersit#ofile session.
(1) UNIX Semantics:
The UNIX file system uses the following consistency semantic

1. Writes to an open file by a user are visible edmtely to other users that have this
file open at the same time.

2. One mode of sharing allows users to shiee pointer of current location into
the file. Thus, the advancing of the pointer by one user afédictharing users.

(i) Session Semantics:
The Andrew file system (AFS) uses the following consistencyaséos:

1. Writes to an open file by a user are not visibienediately to other users that have
the same file open simultaneously.

2. Once a file is closed, the changes madet tare visible only in sessions
starting later. Already open instances of the file do natcethis change.

(iif) Immutable —shared File Semantics:
Once afile is declared as shared by its creator, it cannot théedo
An immutable file has two key properties:

Its name may not be reused and its contents may not balaltere

4.6 FILE PROTECTION

4.6.1 Need for file protection.

When information is kept in a computer systeve want to keep it safe from
physical damage (reliability) and improper access éotain).

Reliability is generally provided by duplicatopies of files. Many computers have
systems programs that automatically (or though aederpoperator intervention) copy
disk files to tape at regular intervals (oncegeey or week or month) to maintain a
copy should a file system be accidentally destroyed.

File systems can be damaged by hardware gansbl(such as errors in reading or
writing), power surges or failures, head crashes, d@mperature extremes, and
vandalism. Files may be deleted accidentally. Bughénfile-system software can also
cause file contents to be lost.

Protection can be provided in many ways. For a Isanadjle-user system, we might
provide protection by physically removing the piby disks and locking them in a
desk drawer or file cabinet. In a multi-ussrstem, however, other mechanisms are
needed.

4.6.2 Types of Access

Complete protection is provided by prohibiting access.
Free access is provided with no protection.

Both approaches are too extreme for general use.
What is needed is controlled access.

Protection mechanisms provide controlled acbgssimiting the types of file access
that can be made. Access is permitted or denied demeon several factors, one of
which is the type of access requested. Skddfarent types of operations may be
controlled:

1. Read:Read from the file.

2. Write: Write or rewrite the file.

3. Execute:Load the file into memory and execute it.
4. Append: Write new information at the end of the file.

5. Delete:Delete the file and free its space for possible reuse.

6. List: List the name and attributes of the file.

4.6.3 Access Control

e Associate with each file and directory an asesontrol list (ACL) specifying the
user name and the types of access allowed for each user.

e When a user requests access to a particular fieepplerating system checks the access
list associated with that file. If that user is Igtr the requestedaccess, the access is
allowed. Otherwise, a protection violation occurs amduber job is denied access to the
file.

e This technique has two undesirable consequences:

e Constructing such a list may be a tediond anrewarding task, especially if we do
not know in advance the list of users in the system.

e The directory entry, previously of fixed sizepwn needs to be of variable size,
resulting in more complicated space management.

e To condense the length of the access control liegny systems recognize three
classifications of users in connection with each file:

Owner: The user who created the file is the owner.

Group: A set of users who are sharing the file and needasiraccess \is a group, or
work group.

Universe: All other users in the system constitute the universe.

4.8 FILE SYSTEM STRUCTURE

v' All disk I/O is performed in units of one block (plgal record) size which will exactly
match the length of the desired logical record.

v Logical records may even vary in length. Pagka number of logical records into
physical blocks is a common solution to this problem.

v' For example, the UNIX operating system defiadisfiles to be simply a tream of
bytes. Each byte is individually addressable byftset from the beginning (or end) of
the file. In this case, the logical records are febyhe file system automatically packs
and unpacks bytes into physical disk bloeksay, 512 bytes per bloekas necessary.

v' The logical record size, physical block size, andkjmactechnique determine how many
logical records are in each physical block. Plhaeking can be done either by the
user’s application program or by the operating system.

Access Methods
1. Sequential Access

% The simplest access method is sequential accdssmition in the file is processed in
order, one record after the other. This mode of acisesby far the most common; for
example, editors and compilers usually access files irfagfigon.

s The bulk of the operations on a file is reads andesriA read operation reads the next
portion of the file and automatically advances l@ fpointer, which tracks the 1/0O
location. Similarly, a write appends to thedeof the file and advances to the end
of the newly written material (the new end of file).cBua file can be reset to the
beginning and, on some systems, a program may bdablép forward or back ward
n records, for some integer n-perhaps only fel. Sequential access is based on
a tape model of a file, and works as wellsequential-access devices as it does on
random- access ones.

2. Direct Access

Begining Current Position End

Q: et :Il

Fig4.10 Sequental-access file

——————— read or wrnte ——»

% Another method is direct access (or relative sgceA file is made up of fixed length
logical records that allow programs to read and wméeords rapidly in no particular
order. The direct- access methods is based on a dislelnof a file, since disks allow
random access to any file block.

% For direct access, the file is viewed as a numbseegdience of blocks or records. A
direct-access file allows arbitrary blocks to bedreawritten. Thus, we may read block
14, then read block 53, and then write blockher& are no restrictions on the
order of reading or writing for a direct-access file.

X/

% Direct — access files are of great use for immediate acteskrge amounts of
information. Database is often of this type. Wh& query concerning a particular
subject arrives, we compute which block contains thtevan and then read that block
directly to provide the desired information.

% As a simple example, on an air linrereservation system, we might store all the
information about a particular flight (for axple, flight 713) in the block
identified by the flight number.

% Thus, the number of available seats for flight 713siered in block 713 of the
reservation file. To store information about larger set, such as people, we might
compute a hash function on the people’s names, or search a small in- memory
index to determine a block to read and search.

3. Other Access methods

% Other access methods can be built on top of a directess method these methods
generally involve the construction of an index tioe file. The index like an index in
the back of a book contains pointers to the varldosks in find a record in the file.
We first search the index, and then use the pototaccess the file directly and the
find the desired record.

Last name Logical Record Mumber
2 datms
Arthur
Smith, Joht Social-Security AHge

2sher /7

: 3

-
Smith

[ridex File Relative File

s With large files, the index file itself maydome too large to be kept in
memory. One solution is to create an index for titex file. The primary index file
would contain pointers to secondary index tileghich would point to the
actual data items.

4.9 DIRECTORY STRUCTURE
There are five directory structures. They are
1. Single-level directory
2. Two-level directory
3. Tree-Structured directory
4. Acyclic Graph directory
5. General Graph directory
1. Single- Level Directory
% The simplest directory structure is the single- level dmgc

% All files are contained in the same directory.

Disadvantage:

% When the number of files increases or whea $lygstem has more than one user,
since all files are in the same directory, they must haveeingmes.

Directory
Abc Cde Fgh JkI Mno Pre test
IMaster file
zerl Userl User3 Directory
. Uszer file
f ™ E DiIEI:tDI'jF
data Test lewel record | hat [data t |dzta|abcd [Wey.

FITT DETE SLLLL

2. Two- Level Directory

 In the two level directory structures, eacherutias her own user file directory
(UFD).

% When a user job starts or a user logs in, the system’s master file directory (MFD)
Is searched. The MFD is indexed by user namaccount number, and each entry
points to the UFD for that user.

“ When a user refers to a particular file, only his own UFD is kedtc

% Thus, different users may have files with the same name.

X/
°e

Although the two- level directory structure solves the name-collision bl

Disadvantage:

« Users cannot create their own sub-directories.

3. Tree- Structured Directory
s A tree is the most common directory structure.
% The tree has a root directory. Every file in the system hasjaeipath name.
% A path name is the path from the root, through all the subditestto a specified file.

% Adirectory (or sub directory) contains a set of files or Soéctbries.

L)

A directory is simply another file. But it is treated in a spleway.

All directories have the same internal format.

One bit in each directory entry defines the entry as alfjleo as a subdirectory (1).
Special system calls are used to create and deleteodiesct

Path names can be of two types: absolute path names orerelatiivnames.

An absolute path name begins at the root and follawath down to the specified file,
giving the directory names on the path.

A relative path name defines a path from the current dingector

4. Acyclic Graph Directory.

K/ X/
. L X4 °e

%

K/
L X4

An acyclic graph is a graph with no cycles.
To implement shared files and subdirectories this dirg&ioucture is used.

An acyclic— graph directory structure is more flexible thamisimple tree structure, but
it is also more complex. In a system where sharinghyemented by symbolic link,
this situation is somewhat easier to handlee déletion of a link does not need to
affect the original file; only the link is removed.

Another approach to deletion is to preserve theuiigl all references to it are deleted.
To implement this approach, we must have smm®ehanism for determining that
the last reference to the file has been deleted.

| sp=ll aserl hin Root

Uzer file
cat | data |Test | lewrel | rruail | rec:orc:|ha.1 |data |bat | d.:ta|abc:d| Drirectory

IV $$$$/$$

[st | nb] [spel]

| list ~eorder | find |

I

dict spell

list all W | count count | words | list

list rade w7y

4.10 ALLOCATION METHODS

v" The main problem is how to allocate space to thidss $o0 that disk space is utilized
effectively and files can be accessed quickly .

v" There are there major methods of allocating disk space:
1. Contiguous Allocation
2. Linked Allocation
3. Indexed Allocation
1. Contiguous Allocation

v The contiguous— allocation method requires each file to occupy set of
contiguous blocks on the disk.

v' Contiguous allocation of a file is defined by thekdaddress and length (in block units)
of the first block. If the file is n blockséong and starts at location b, then it
occupies blocks b,. b+1, b+2,.....b+n-1.

v The directory entry for each file indicates the addrof the starting block and the length
of the area allocated for this file.

Disadvantages:

1_. Finding e Ditectory space for a new
file. S I — Tongih

n[Ja[=zl J-[] carat) :

‘s 7] il

s e[Jw[Ju[] ! ° :

e[e[e[|

EI T

o[]2 o Jes[]

o Jos[J2s[|

e J2s[e[[a[]

= The contiguous disk space-allocation probleuaifes from the problem of
external fragmentation. As file are allocated anceidel, the free disk space is
broken into chunks. It becomes a problem wherattgeest contiguous chunk is
insufficient for a request; storage is fragment#d a number of holes, no one of
which is large enough to store the data.

2. Determining how much space is needed for a file.

When the file is created, the total amount of spaeél need must be found an allocated
how does the creator know the size of the file to be created?

If we allocate too little space to a file, weay find that file cannot be extended.

The other possibility is to find a larger hole, capg contents of the file to the new

space, and release the previous space. Thiss saf actions may be repeated as long
as space exists, although it can be troensuming. However, in this case, the user
never needs to be informed explicitly aboutatvhis happening ; the system

continues despite the problem, although more and more slowly.

Even if the total amount of space needed for ai§ilknown in advance pre-allocation
may be inefficient.

A file that grows slowly over a long periochdnths or years) must be allocated
enough space for its final size, even thougich of that space may be unused for
a long time the file, therefore has a large amount of inteagghentation.

To overcome these disadvantages:

Use a modified contiguous allocation scheme, in wlacbontiguous chunk of space
called as an extent is allocated initially and thehen that amount is not large enough
another chunk of contiguous space an extent is added taitiakallocation.

Internal fragmentation can still be a problem ié textents are too large, and external
fragmentation can be a problem as extentsvaifying sizes are allocated and
deallocated.

2. Linked Allocation

v

v

Linked allocation solves all problems of contiguouscatmn.

With linked allocation, each file is a linkddst of disk blocks, the disk blocks
may be scattered any where on the disk.

The directory contains a pointer to the first aast blocks of the file. For example, a file
of five blocks might start at block 9, continuebédck 16, then block 1, block 10, and
finally bock 25.

Each block contains a pointer to the next block.sehgointers are not made available to
the user.

There is no external fragmentation with linked &adfican, and any free block on the free
space list can be used to satisfy a request.

v' The size of a file does not need to the declarednwhat file is created. A file can
continue to grow as long as free blocks are avalabhsequently, it is never necessary
to compacts disk space.

T, =
— directory

fle start end
o e Y T
[15[<[17 [
o[} o[1e 0[5 Ju[]
lII|' r

13 f|23/| |?j| hs[]
16’_1Lﬁ1? f8|_|19|:|
2o |:[J] 2 Jes[]
2al as ’_%Tzﬁ]

s |22 Ja[]3]
Disadvantages: @———m-— ———

1. Used effectively
only for sequential access files.

¢ To find the ith block of a file, we must start at tteginning of that file, and follow the
pointers until we get to the ith block. Eaabes to a pointer requires a disk read,
and sometimes a disk seek consequently, it is oweffi to support a direct- access
capability for linked allocation files.

2. Space required for the pointers

e If a pointer requires 4 bytes out of a 512-byteck|dhen 0.78 percent of the disk is being
used for pointers, rather than for information.

e Solution to this problem is to collect blocks into multipleslled clusters, and to allocate
the clusters rather than blocks. For instance, thesfistem may define a clusters as 4
blocks, and operate on the disk in only cluster units.

3. Reliability

e Since the files are linked together by peistscattered all over the disk hardware
failure might result in picking up the wrongoipter. This error could result in
linking into the free- space list or into anothi@e. Partial solution are to use doubly
linked lists or to store the file names in a refatblock number in each block; however,
these schemes require even more over head for each file.

File Allocation Table (FAT)

X/
°e

7/
X4

L)

K/
L X4

An important variation on the linked allocation mathis the use of a file allocation
table(FAT).

This simple but efficient method of disk- space @dlion is used by the MS-DOS and
OS/2 operating systems.

A section of disk at beginning of each patrtition is set asid®mtain the table.
The table has entry for each disk block, and is indexed lek Ilomber.

The FAT is much as is a linked list.

The directory entry contains the block number the firsthklbf the file.

The table entry indexed by that block number costdahre block number of the next
block in the file.

This chain continues until the last block which haspecial end of - file value as the
table entry.

Unused blocks are indicated by a 0O table value.

Allocating a new block file is a simple matter ofding the first 0- valued table entry,
and replacing the previous end of file value with the addredse new block.

The 0 is replaced with the endof — file value, an illustrative example is the FAT
structure for a file consisting of disk blocks 217,618, &3l 3

directory entry

B

nane atart block

no. of disk blocks -1[
FAT

3. Indexed Allocation

v

v

AN

A N N NN

Linked allocation solves the externafragmentation and size- declaration problems of
contiguous allocation.

Linked allocation cannot support efficient directess, since the pointers to the blocks
are scattered with the blocks themselves allr ahe disk and need to be retrieved in
order.

Indexed allocation solves this problem by bringealy the pointers together into one
location: the index block.

Each file has its own index block, which is an array of didlock addresses.
The ith entry in the index block points to the ith block of the f
The directory contains the address of the index block .

To read the ith block, we use the pointer in the ith indblock entry to find and read the
desired block this scheme is similar to the paging scheme .

When the file is created, all pointers in the painia the index block are set to nil. when
the ith block is first written, a block is obtainewr the free space manager, and its
address is put

directory !n the ith
index — block
file mndex block entry.
JEER 1%
v Indexed
allocation
/f\ supports
direct access,
7 without
1 suffering
19 5 from external
2o | m%gg ! frggmentation
1 , because an
2o Jas[oa [z |2 | \ — free block ony
o]2] =0]3] —_—_ the' disk may
satisfy a

request for
more space.

Disadvantages
1.Pointer Overhead

Indexed allocation does suffer from wasted space. pbinter over head of the index block
is generally greater than the pointer over head of linkezhtibn.

2. Size of Index block

If the index block is too small, however, it wibt be able to hold enough pointers for a
large file, and a mechanism will have to be available to dehlthis$ issue:

Linked Scheme:An index block is normally one disk block. Thus, d@ncbe read and written
directly by itself. To allow for large files, we may link togateeveral index blocks.

Multilevel index: A variant of the linked representation is to usdrst fevel index block to
point to a set of secondlevel index blocks.

Combined scheme:

o Another alternative, used in the UFS, is topkdkee first, say, 15 pointers of the
index block in the file’s inode.

o The first 12 of these pointers point to direct ldgicthat is for small (no more than 12
blocks) files do not need a separate index block

o0 The next pointer is the address of a single indirect block.

o The single indirect block is an index block, coniagnnot data, but rather the addresses
of blocks that do contain data.

(0]

Then there is a double indirect block pointehich contains the address of a block
that contain pointers to the actual data blocks. aksepointer would contain pointers to
the actual data blocks.

The last pointer would contain the address of a triple iodbleck.

4.11 FREE SPACE MANAGEMENT

v

Since disk space is limited, we need to reuse theesipam deleted files for new files, if
possible.

v" To keep track of free disk space, the system maintains afeee-fist.

v' The free-space list records all free disk bloekthose not allocated to some file or

directory.
v' To create a file, we search the free-spateftis the required amount of space, and
allocate that space to the new file.
v This space is then removed from the free-space list.
v" When afile is deleted, its disk space is added to the free-$pac
1. Bit Vector
% The free-space list is implemented as a bit map or bit vector
% Each block is represented by 1 bit. If the Dblogkree, the bit is 1; if the block is
allocated, the bit is 0.
% For example, consider a disk where block
% 2,3,45,8,9,10,11,12,13,17,18,25,26 and 27 are free, and theofrébe block are
allocated. The free space bit map would be
% 001111001111110001100000011100000 ...
% The main advantage of this approach is itatively simplicity and efficiency in
finding the first free block, or n consecutive free blockshandisk.
2. Linked List

K/
L X4

Another approach to free-space management is totdigéther all the free disk blocks,
keeping a pointer to the first free block in a sgklocation on the disk and caching it in
memory.

This first block contains a pointer to the nexefidisk block, and so on. In our example,
we would keep a pointer to block 2, as the first fiobeck. Block 2 would contain a
pointer to block 3, which would point to block 4, whialould point to block 5, which
would point to block 8, and so on.

*

% However, this scheme is not efficient; to traverseligiewe must read each block, which
requires substantial /0O time. The FAT method incoapes free-block accounting data
structure. No separate method is needed.

3. Grouping

% A modification of the free-list approach is to €tdhe addresses of n free blocks in the
first free block.

s The first n-1 of these blocks are actually free.
% The last block contains the addresses of another n freesbkadt so on.

% The importance of this implementation is thhe addresses of a large number of
free blocks can be found quickly.

4. Counting

% We can keep the address of the first freeckl@and the number n of free
contiguous blocks that follow the first block.

X/
°e

Each entry

in the free- —

space list GEeespane |
. list head

then consists

of a disk

address anc

a count.

s Although
each entry
requires
more space
than would a
simple disk
address, the

overall list will be shorter, as long as the count is genergteater than 1.

Recovery

Files and directories are kept both in main mgmand on disk, and care must be taken to
ensure that system failure does not result in loss of datedata inconsistency.

1. Consistency Checking

The directory information in main memory is genirahore up to date than is the
corresponding information on the disk, becaunaehed directory information is not
necessarily written to disk as soon as the update takes place

Frequently, a special program is run at reboot ttmecheck for and correct disk
inconsistencies.

The consistency checkera systems program such as chkdsk in MS-B@8mpares
the data in the directory structure with the datacké on disk and tries to fix any
inconsistencies it finds. The allocation andeefspace-management algorithms
dictate what types of problems the checker cadh #ind how successful it will be in
fixing them.

2. Backup and Restore

Magnetic disks sometimes fail, and care musttdi®n to ensure that the data lost in
such a failure are not lost forever. To this endiesysprograms can be used to back up
data from disk to another storage device, such #spay disk, magnetic tape, optical
disk, or other hard disk.

Recovery from the loss of an individual file, oraof entire disk, may then be a matter of
restoring the data from backup.

A typical backup schedule may then be as follows:

Day 1. Copy to a backup medium all files frotme disk. This is called fall
backup.

Day 2: Copy to another medium all files dgeh since day 1. This is an
incremental backup.

Day 3: Copy to another medium all files changed since day 2.

Day N: Copy to another medium all files changed sioteg N— 1. Then go back to Day
1.

UNIT -V CASE STUDY

Linux System- Basic Concepts; System Administration-Ragrements for Linux System
Administrator, Setting up a LINUX Multifunction Server, Dom ain Name System, Setting
Up Local Network Services; Virtualization- Basic Concepts Setting Up Xen, VMware on
Linux Host and Adding Guest OS.

5.1 LINUX SYSTEM

5.1.1 Basic Concepts

v Linux looks and feels much like any other UNIX system; indé#&dIX compatibility has
been a major design goal of the Linux project. Howeli@rux is much younger than
most UNIX systems. Its development began in1991, whEmmish university student,
Linus Torvalds, began developing a small but selftaioed kernel for the 80386
processor, the first true 3Rtprocessor in Intel’s range of PC-compatible CPUs. of
arbitrary files (but only read-only memory mapping waplamented in 1.0).

v" A range of extra hardware support was included inrilsase. Although still restricted
to the Intel PC platform, hardware support had growintlude floppy-disk and CD-
ROM devices, as well as sound cards, a range of mick ra@rnational keyboards.
Floating-point emulation was provided in the kerral 80386 users who had no 80387

math coprocessor. System V UNIX-style interprocess comcation (IPC), including
shared memory, semaphores, and message queues, was imglemente

v At this point, development started on the 1.1 kertrebsn, but numerous bug-fix patches
were released subsequently for 1.0. A pattern was afi@stehe standard numbering
convention for Linux kernels. Kernels with an odd miwersion number, such as 1.1 or
2.5, are development kernels; even numbered minorerersiumbers are stable
production kernels. Updates for the stable kernedsraended only as remedial versions,
whereas the development kernels may include newer aldtively untested
functionality.

v As we will see, this pattern remained in effect ungitsion 3.was given a major version-
number increment because of two major new capabilit®gport for multiple
architectures, including a 64-bit native Alpha ponti aymmetric multiprocessing (SMP)
support. Additionally, the memory management code wastanbally improved to
provide a unified cache for file-system data independetiteotaching of block devices.

v As a result of this change, the kernel offered gremtyeased file-system and virtual
memory performance. For the first time, file-systerohtag was extended to networked
file systems, and writable memory-mapped regions veése supported. Other major
improvements included the addition of internal ledrthreads, a mechanism exposing
dependencies between loadable modules, supporhdoautomatic loading of modules
on demand, file-system quotas, and POSIX-compatib#d-tirme process-scheduling
classes.

v" Improvements continued with the release of Linuxi@.2999. A port to Ultra SPARC
systems was added. Networking was enhanced with motielédirewalling, improved
routing and traffic management, and support for TCRelawindow and selective
acknowledgement. Acorn, Apple, and NT disks could now bel,read NFS was
enhanced with a new kernel-mode NFS daemon. Signalihgnhterrupts, and some
I/O were locked at a finer level than before to imgr@ymmetric multiprocessor (SMP)
performance.

5.1.2 The Linux System

v Linux kernel is composed entirely of code writteonfi scratch specifically for the Linux
project, much of the supporting software that makeshe Linux system is not exclusive
to Linux but is common to a number of UNIX-like oping systems. In particular,
Linux uses many tools developed as pdrBerkeley’s BSD operating system, MIT’s X
Window System, and the Fr8eftware Foundation’s GNU project.

v' This sharing of tools has worked in both directionise Thain system libraries of Linux
were originated by the GNU project, but the Linux comityugreatly improved the
libraries by addressing omissions, inefficiencies] dngs. Other components, such as
the GNU C compiler (gcc), were already of sufficientlgthguality to be used directly in
Linux. The network administration tools under Linux eederived from code first
developed for 4.3 BSD, but more recent BSD derivativegh as FreeBSD, have
borrowed code from Linux in return. Examples of thiarghg include the Intel floating-
point-emulation math library and the PC sound-hardwarecdedrivers.

v The Linux system as a whole is maintained by a loosevork of developers
collaborating over the Internet, with small groupsmatividuals having responsibility for
maintaining the integrity of specific components.

v' A small number of public Internet file-transfer-pyobl (FTP) archive sites act as de
facto standard repositories for these components. Hile System Hierarchy Standard
document is also maintained by the Linux communig/ @ means of ensuring
compatibility across the various system components.

v This standard specifies the overall layout of adéad Linux file system; it determines
under which directory names configuration files, dites, system binaries, and run-time
data files should be stored.

5.1.3 Linux Distributions

v" In theory, anybody can install a Linux system bycli&ig the latest revisions of the
necessary system components from the FTP sites@ngiling them. InLinux’s early
days, this is precisely what a Linux user had to A®.Linux has matured, however,
various individuals and groups have attempted thenthis job less painful by providing
standard, precompiled sets of packages for easy installatio

v' These collections, or distributions, include much entran just the basic Linux system.
They typically include extra system-installationdamanagement utilities, as well as
precompiled and ready-to-install packages of manghefcommon UNIX tools, such as
news servers, web browsers, text-processing and editing todlsyvan games.

v' The first distributions managed these packages implg providing a means of
unpacking all the files into the appropriate plad@se of the important contributions of
modern distributions, however, is advancpackage management. Today’s Linux
distributions include a package-tracking database #tlows packages to be installed,
upgraded, or removed painlessly.

5.1.4 Linux Licensing

v' The Linux kernel is distributed under version 2fOttee GNU General Public License
(GPL), the terms of which are set out by the Freew&o# Foundation. Linux is not
public-domain software. Public domain implies thHa¢ tauthors have waived copyright
rights in the software, but copyright rights in Linu&de are still held by the code’s
various authors. Linux is free software, however, in ¢base that people can copy it,
modify it, use it in any manner they want, and give away (dxthelir own copies.

v' The main implication ofLinux’s licensing terms is that nobody using Linux, or creating a
derivative of Linux (a legitimate exercise), cantdmite the derivative without including
the source code. Software released under the GPL tcheneedistributed as a binary-
only product.

v If you release software that includes any components abwgréhe GPL, then, under the
GPL, you must make source code available alongsidebargry distributions. (This
restriction does not prohibit makirgor even selling-binary software distributions, as
long as anybody who receives binaries is also gilkeropportunity to get the originating
source code for a reasonable distribution charge.)

5.2 SYSTEM ADMINISTRATION

v In its overall design, Linux resembles other tradial, nonmicrokernel UNIX
implementations. It is a multiuser, preemptively ntadiking system with a full set of
UNIX-compatible tools. Linux’s file system adheres to traditional UNIX semantics, and
the standard UNIX networking model is fully implemesit The internal details of
Linux’s design have been influenced heavily by the history of this operating system’s
development.

v' Although Linux runs on a wide variety of platforms, vitas originally developed
exclusively on PC architecture. A great deal of ety development was carried out by
individual enthusiasts rather than by well-fundedadepment or research facilities, so
fromthe start Linux attempted to squeeze as mucttifumality as possible from limited
resources. Today, Linux can run happily on a multipssor machine with many
gigabytes of main memory and many terabytes of diskce, but it is still capable of
operating usefully in under 16 MB of RAM.

5.2.1 Components of a Linux System

v' The Linux system is composed of three main bodie®de, in line with most traditional
UNIX implementations:

1. Kernel. The kernel is responsible for maintaining all thgortant abstractions of the
operating system, including such things as virtualmemodypeocesses.

2. System libraries. The system libraries define a standard set of fonstithrough
which applications can interact with the kernel. Thiesetions implement much of the
operating-system functionality that does not needfthl privileges of kernel code. The
most important system library is the C library, knoamlibc. In addition to providing the
standard C library, libc implements the user mode sitthe Linux system call interface,
as well as other critical system-level interfaces.

3. System utilities.The system utilities are programs that performvitlial, specialized
management tasks. Some system utilities are invalstdjce to initialize and configure
some aspect of the system. Other&known as daemons in UNIX terminologyun
permanently, handling such tasks as responding tomimg network connections,
accepting logon requests from terminals, and updatin{jlésg

5.2.2 Kernel Modules

v' The Linux kernel has the ability to load and unl@atitrary sections of kernel code on
demand. These loadable kernel modules run in pgedekernel mode and as a
consequence have full access to all the hardwarabdaies of the machine on which
they run. In theory, there is no restriction on whakernel module is allowed to do.
Among other things, a kernel module can implementwacdedriver, a file system, or a
networking protocol.

v' Kernel modules are convenient for several reasons. Linux’s source code is free, so
anybody wanting to write kernel code is able to ciben@ modified kernel and to reboot
into that new functionality. However, recompiling, r&limg, and reloading the entire
kernel is a cumbersome cycle to undertake when yeul@veloping a new driver. If you
use kernel modules, you do not have to make a newek&rntest a new driverthe

driver can be compiled on its own and loaded intoaineady running kernel. Of course,
once a new driver is written, it can be distributedaasiodule so that other users can
benefit from it without having to rebuild their kernels.

The module support under Linux has four components:

1. Themodule-management systenallows modules to be loaded into memory and to
communicate with the rest of the kernel.

2. The module loader and unloader which are user-mode utilities, work with the
module-management system to load a module into memory.

3. Thedriver-registration system allows modules to tell the rest of the kernel thatw
driver has become available.

4. A conflict-resolution mechanismallows different device drivers to reserve hardware
resources and to protect those resources from accideathl/nother driver.

1. Module Management

R/
A X4

Loading a module requires more than just loading its bioanyents into kernel memory.
The system must also make sure that any referéheesrrect locations in the kernel’s
address space. Linux deals with this reference upmddynsplitting the job of module
loading into two separate sections: the managemeseations of module code in kernel
memory and the handling of symbols that modules are alltavesference.

Linux maintains an internal symbol table in the nadr This symbol table does not
contain the full set of symbols defined in the kernel during the latter’s compilation;
rather, a symbol must be explicitly exported. Thedetxported symbols constitutes a
well-defined interface by which a module can interact with trad.

Driver Registration

R/
L X4

>

Once a module is loaded, it remains no more tharsa@lated region of memory until it
lets the rest of the kernel know what new functiogatifprovides. The kernel maintains
dynamic tables of all known drivers and provides tao$eoutines to allow drivers to be
added to or removed from these tables at any time.KEnnel makes sure that it calls a
module’s startup routine when that module is loaded and calls the module’s cleanup
routine before that module is unloaded. These rositame responsible for registering the
module’s functionality.

A module may register many types of functionalityisinot limited to only one type. For
example, a device driver might want to register twoassjg mechanisms for accessing
the device. Registration tables include, among others, tlogv/fing items:

» Device drivers. These drivers include character devices (such adeps,
terminals, and mice), block devices (including aitkddrives), and network
interface devices.

* File systems.Thefile system may be anything that implements Linux’s virtual
file system calling routines. It might implement @rhat for storing files on a
disk, but it might equally well be a network file syst, such as NFS, or a virtual

file system whose contents are generated on demadid aslLinux’s /proc file
system.

* Network protocols. A module may implement an entire networking protocol,
such as TCP or simply a new set of packet-filtering rulea fogtwork firewall.

* Binary format. This format specifies a way of recognizing, loadingd a
executing a new type of executable file.

3. Conflict Resolution

% Commercial UNIX implementations are usually sold to run on a vendor’s own hardware.
One advantage of a single-supplier solution is thatsoftware vendor has a good idea
about what hardware configurations are possible. R@\zae, however, comes in a vast
number of configurations, with large numbers of pdsstirivers for devices such as
network cards and video display adapters. The prokdénmanaging the hardware
configuration becomes more severe when modular devicers are supported, since the
currently active set of devices becomes dynamically variab

% Linux provides a central conflict-resolution mectsam to help arbitrate access to certain
hardware resources. Its aims are as follows:

* To prevent modules from clashing over access to hardware resources

» To prevent autoprobes—device-driver probes that auto-detect device confition—
from interfering with existing device drivers

* To resolve conflicts among multiple drivers trying to access the same hardwas, for
example, when both the parallel printer driver and gheallel line IP (PLIP) network
driver try to talk to the parallel port.

5.3 REQUIREMENTS FOR LINUX SSYTEM ADMINISTRATOR
5.3.1 Hardware-Abstraction Layer

% The HAL is the layer of software that hides hardwangset differences from upper
levels of the operating system. The HAL exports tugirhardware drivers. Only a single
version of each device driver is required for eadhUCarchitecture, no matter what
support chips might be present. Device drivers majcds and access them directly, but
the chipset-specific details of mapping memory, a@uring I/O buses, setting up DMA,
and coping with motherboard-specific facilities are alMed by the HAL interfaces.

5.3.2 Kernel

% The kernel layer ofWindows has four main responisigd: thread scheduling, low-level
processor synchronization, interrupt and exceptamdhing, and switching between user
mode and kernel mode. The kernel is implemented enGhanguage, using assembly
language only where absolutely necessary to interfaitle the lowest level of the
hardware architecture.

5.3.3 Kernel Dispatcher

*

% The kernel dispatcher provides the foundation lieréxecutive and the subsystems. Most
of the dispatcher is never paged out of memory,i@nexecution is never preempted. Its
main responsibilities are thread scheduling and ecanswitching, implementation of
synchronization primitives, timer management, softwaterrupts (asynchronous and
deferred procedure calls), and exception dispatching.

5.3.4 Threads and Scheduling

% Like many other modern operating systems, Windows ysecesses and threads for
executable code. Each process has one or more shraad each thread has its own
scheduling state, including actual priority, processoniyfi and CPU usage information.

% There are six possible thread statestdy, standby, running, waiting, transition, and
terminated. Ready indicates that the thread is waiting to rure filghest-priority ready
thread is moved to the standby state, which means tih@ next thread to run. In a
multiprocessor system, each processor keeps onalthres standby state. A thread is
running when it is executing on a processor. It runsl it is preempted by a higher-
priority thread, until it terminates, until its allett execution time (quantum) ends, or
until it waits on a dispatcher object, such as an esigmaling 1/O completion. A thread
is in the waiting state when it is waiting for a disgher object to be signaled. A thread is
in the transition state while it waits for resourocesessary for execution; for example, it
may be waiting for its kernel stack to be swappedramfdisk. A thread enters the
terminated state when it finishes execution.

5.3.5 Implementation of Synchronization Primitives

0,

% Key operating-system data structures are managebjests using common facilities for
allocation, reference counting, and security. Dispatciigects control dispatching and
synchronization in the system. Examples of these objedtgdmthe following:

* The event object is used to record an event occurrence and to synchronize this
occurrence with some action. Notification events digakh waiting threads, and
synchronization events signal a single waiting thread.

» The mutant provides kernel-mode or user-mode mutual exclusion associated \Wweh t
notion of ownership.

* The mutex, available only in kernel mode, provides deadlock-free mutual exclusion.

» The semaphore object acts as a counter or gate to control the number of threads that
access a resource.

* The thread object is the entity that is scheduled by the kernel dispatcher. It is associated
with a process object, which encapsulates a virtddless space. The thread object is
signaled when the thread exits, and the process object, whenatess exits.

* The timer object is used to keep track of time and to signal timeouts when operations
take too long and need to be interrupted or whenem@ogic activity needs to be
scheduled.

5.4 SETTING UP A LINUX MULTIFUNCTION SERVER

Follow the steps below to avoid any complications during théwexe installation:

1. Confirm that the printer you will use to connect to the ORRO is operating correctly.
2. When you have confirmed that the printer is operatingectiyr switch its power OFF.
3. Confirm that your network is operating normally.

4. Using a CAT 5 Ethernet cable, connect the DPR-10Rérket Port (labelled LAN) to the
network.

5. While the printer is turned OFF, connect the USBter cable to the printer and then to the
USB port on the Print Server.

6. Switch on the printer.

7. Insert the power adapter’s output plug into the DC 5V power socket on the rear panel of the
Print Server.

8. Connect the other end of the power adapter imovwaer outlet. This will supply power to the
Print Server. The blue LED on the Print Server’s front panel should turn on and the Print
Server’s self-test will proceed.

Power ON Self-Test

e When the DPR-1020 is powered ON, it automatically perfoa Self-Test on each of its
major components. The final result of the Self-Tisssignaled by the state of the USB
LED indicator following the Self-Test. Preliminary the actual component tests, the
three LED indicators are tested to confirm their operation

e Immediately after power-up, all three of the blue LEfd®uld illuminate steadily for
several seconds. Then the USB LED should light OFFIsameously. Irregularity of any
of the three LEDs during these LED tests may mearetisea problem with the LEDs
themselves.

e The actual component tests immediately follow th®LltEsts. A normal (no fault) result
is signaled by simultaneous flashing of the LED®¢htimes, followed by a quiescent
state with all three LEDs dark.

e If the Self-Test routine traps any component ettegn following the LED tests the Self-
Test will halt and the LEDs will continuously signhkterror according to the following
table. In the event of any such error signal, contaat dealer for correction of the faulty
unit.

Getting Started

e Below is a sample network using the DPR-1020. The D@Elhas a built- in web
configurator that allows users to easily configure Print Server and manage multiple
print queues through TCP/IP.

PR 1020
MEP Prial Sareaf

Auto-Run Installation

Insert the included installation CD intoytacomputer’s CD-ROM drive to initiate the
auto-run program. If auto-run does not start, click My Corep> [CD ROM Drive Letter].

The content of the installation CD-ROM includes:

« Install PS Software — click this to install the PS Software, which contains PS-lani
PS-Wizard that can configure more settings for the MFP §eweh as:

- Change the IP address

- Support the multi-functions (Print/Scan/Copy/Fax) of BRVprinter, GDI
printing, and other software from any MFP/GDI printer.

“- Easily add a printer to your computer.

* View Quick Installation Guide — click this to preview the Quick Installation Guide in
PDF format for step-by-step instructions of the MFP Sena&allation.

* View Manual — click this to preview the User Manual in PDF format for detailed
information regarding the MFP Server.

* Install Acrobat Reader — click this to install Acrobat Reader for the viewing and
printing of PDF files found in this Installation CD-ROM.

* Exit — click to close the Auto-Run program.
5.5 DOMAIN NAME SYSTEM

The domain name, or network name, is a unique nartevid by a standard Internet suffixes
such as .com, .org, .mil, .net, etc. You can pretty much naue LAN anything if it has a
simple dial-up connection and your LAN is not a sepm®viding some type of service to other
hosts directly. In addition, our sample network issidared private since it uses IP addresses in
the range of 192.168.1.x. Most importantly, the donmame of choice should not be accessible
from the Internet if the above constraints arecyrienforced. Lastly, to obtain an "official"
domain name you could register through InterNIC, Neftw®olutions or Register.com. See the
Resources section later in this article for the VBabs with detailed instructions for obtaining
official domain names.

Hostnames

e Another important step in setting up a LAN is assigna unigue hostname to each
computer in the LAN. A hostname is simply a unique @dahat can be made up and is
used to identify a uniqgue computer in the LAN. Aldte hame should not contain any
blank spaces or punctuation. For example, the follgvaire valid hostnames that could
be assigned to each computer in a LAN consisting lobgs: hostname 1 - Morpheus;
hostname 2 - Trinity; hostname 3 - Tank; hostname 4 - l@rand hostname 5 - Dozer.
Each of these hostnames conforms to the requirethenho blank spaces or punctuation
marks are present. Use short hostnames to elimiraés®&ve typing, and choose a name
that is easy to remember.

e Every host in the LAN will have the same network addreébroadcast address, subnet
mask, and domain name because those addresses identigiloek in its entirety. Each
computer in the LAN will have a hostname and IP addtkat uniquely identifies that
particular host. The network address is 192.168.1.0, taedbroadcast address is
192.168.1.128. Therefore, each host in the LAN must leavdP address between
192.168.1.1 to 192.168.127.

IP address Example Same/unique
Network address 192.168.1.0 Same for all hosts
Domain name www.yourcompanyname.co Same for all hosts
Broadcast addre:192.168.1.128 Same for all hosts
Subnet mask 255.255.255.0 Same for all hosts
Hostname Any valid name Unique to each host
Host addresses 192.168.1x x must be unique to each h

5.6 SETTING UP LOCAL NETWORK SERVICES

v Linux is increasingly popular in the computer netkiog/telecommunications industry.
Acquiring the Linux operating system is a relativelynple and inexpensive task since
virtually all of the source code can be downloadednfrseveral different FTP or HTTP
sites on the Internet. In addition, the most recensivar of Red Hat Linux can be
purchased from computer retail stores for between @l $50, depending on whether
you purchase the standard or full version. The Irddeand is indeed a worthwhile
investment (vs. the free FTP or HTTP versions) simakiable technical support is
included directly from the Red Hat Linux engineeos &t least a year. This can be very
helpful if, for instance, you can not resolve an afation/configuration problem after
consulting the Red Hat Linux manuals.

v' This article describes how to put together a Loca&aAXetwork (LAN) consisting of two
or more computers using the Red Hat Linux 6.2 opsgasystem. ALAN is a
communications network that interconnects a varietgesices and provides a means for
exchanging information among those devices. The aimk scope of a LAN is usually

www.yourcompanyname.com

small, covering a single building or group of builgén In a LAN, modems and phone
lines are not required, and the computers shouldds® enough to run a network cable
between them.

For each computer that will participate in the LAN, Yloteed a network interface card

(NIC) to which the network cable will be attached. ¥Ywill also need to assign a unique
hosthame and IP address to each computer in the(dastribed later in this article), but

this requires a basic understanding of TCP/IP (Jmassion Control Protocol/Internet

Protocol).

Introduction to TCP/IP

v' TCP/IP is the suite of protocols used by the Inteared most LANs throughout the

world. In TCP/IP, every host (computer or other comiwafions device) that is
connected to the network has a unique IP addressPAaddiress is composed of four
octets (numbers in the range of 0 to 255) sepatayedecimal points. The IP address is
used to uniquely identify a host or computer onltA&l. For example, a computer with
the hostname Morpheus could have an IP addres®2168.7.127. You should avoid
giving two or more computers the same IP address by usingrige of IP addresses that
are reserved for private, local area networks; thrgye of IP addresses usually begins
with the octets 192.168.

LAN network address The first three octets of andBrass should be the same for all
computers in the LAN. For example, if a total of 12&ts exist in a single LAN, the IP

addresses could be assigned starting with 192.168.1.x, whenegaeis a number in the

range of 1 to 128. You could create consecutive LAN®iwithe same company in a
similar manner consisting of up to another 128 coteys. Of course, you are not limited
to 128 computers, as there are other ranges ofdResgks that allow you to build even
larger networks.

v' There are different classes of networks that deterrthie size and total possible unique

IP addresses of any given LAN. For example, a class N cAn have over 16 million
unique IP addresses. A class B LAN can have over 65,00Qe IP addresses. The size
of your LAN depends on which reserved address rangeuge and the subnet mask
(explained later in the article) associated with that rasge Table 1.).

Address range Subnet mask Provides Addresses per LAN

10.0.0.0 - 10.255.255.255.2£255.0.0.0 1 class A LAN 16,777,216
172.16.0.0 - 172.31.255.255 255.255.0.0 16 class B LANs 65,536
192.168.0.0 - 192.168.255.2 25.255.255.0 256 class C LAN: 256

Address ranges and LAN sizes

Network and broadcast addresses

Another important aspect of building a LAN is that #ugresses at the two extreme ends
of the address range are reserved for use as theésLAdtwork address and broadcast
address. Theetwork address is used by an application to represent the ovestilvork.
The broadcast address is used by an application to send the same meseaaj ather
hosts in the network simultaneously.

e For example, if you use addresses in the range 2f168.1.0 to 192.168.1.128, the first
address (192.168.1.0) is reserved as the network addeesl the last address
(192.168.1.128) is reserved as the broadcast addrémsefdre, you only assign
individual computers on the LAN IP addresses in tla@ge of 192.168.1.1 to
192.168.1.127:

Network address 192.168.1.0
Individual hosts: 192.168.1.1t0 192.168.1.1
Broadcast addres 192.168.1.128

Subnet masks

e Each host in a LAN has a subnet mask. Jiimet mask is an octet that uses the number
255 to represent the network address portion ofRheddress and a zero to identify the
host portion of the address. For example, the subask 255.255.255.0 is used by each
host to determine which LAN or class it belongs to. Zkheo at the end of the subnet
mask represents a unique host within that network.

Assigning IP addresses in a LAN

There are two ways to assign IP addresses in a LAN. #oumanually assign a static IP
address to each computer in the LAN, or you can uspegial type of server that
automatically assigns a dynamic IP address to eachutemgs it logs into the network.

% Static IP addressing

e Static IP addressing means manually assigning auani§ address to each
computer in the LAN. The first three octets must ke ghme for each host, and
the last digit must be a unique number for eacht. hims addition, a unique
hostname will need to be assigned to each compuaeh Eost in the LAN will
have the same network address (192.168.1.0), broadithstsa (192.168.1.128),
subnet mask (255.255.255.0), and domain name (yourecgmaaie.com). It's a
good idea to start by visiting each computer in AN and jotting down the
hostname and IP address for future reference.

% Dynamic IP addressing

e Dynamic IP addressing is accomplished via a seorehost called DHCP
(Dynamic Host Configuration Program) that automdliycassigns a unique IP
address to each computer as it connects to the LANimias service called
BootP can also automatically assign unique IP ade® to each host in the
network. The DHCP/ BootP service is a program or detriaewill act as a host
with a unique IP address. An example of a DHCP deviagater that acts as an
Ethernet hub (a communications device that allowKiphel host to be connected
via an Ethernet jack and a specific port) on one end &masah connection to the
Internet on the opposite end. Furthermore, the DH@®esavill also assign the

network and broadcast addresses. You will not be rafjuoemanually assign
hostnames and domain names in a dynamic IP addressingeschem

5.7 SETTING UP Xen , VMare ON LINUX HOST AND ADDING GUEST OS

What Is VMware Player?

v

v

VMware Player is a free desktop application that s run virtual machines on a
Windows or Linux PC.

VMware Player is the only product on the market tleéd you run virtual machines
without investing in virtualization software, makingeiasier than ever to take advantage
of the security, flexibility, and portability of wwmal machines. VMware Player lets you
use host machine devices, such as CD and DVD drives, from thd widchine.

VMware Player provides an intuitive user interface fonning preconfigured virtual
machines created with VMware Workstation, ESX Server, Viw@erver, and GSX
Server. On Windows host machines, VMware Player also opadsruns Microsoft
Virtual PC and Virtual Server virtual machines andn@ptec Backup Exec System
Recovery (formerly LiveState Recovery) system images. VidWwdayer makes VMware
virtual machines accessible to colleagues, partnasspmers, and clients, whether or not
they have purchased VMware products. Anyone who downldddware Player can
open and run compatible virtual machines.

What You Can Do with VMware Player

With VMware Player, you can:

= Use and evaluate prebuilt applicationddownload and safely run prebuilt
application environments in virtual machines that available from the Virtual
Appliance Marketplace at http://vam.vmware.com.The Virtuappliance
Marketplace includes virtual machines from leadsoftware vendors, including
Oracle, Red Hat, Novell, BEA, SpikeSource, IBM, and MySgd_well as virtual
machines that are preconfigured with popular open sourteasef

= Transform software distribution-Simplify software distribution by shipping
preconfigured software in virtual machines. End usarsexperience the benefits
of your products immediately, without setup hassles. VidwRlayer is ideal for
shipping evaluation copies or beta software. You gqatkage complex,
sophisticated applications, complete with a full wegkenvironment, in a virtual
machine that can be used by anyone who downloads VMware Player.

= Collaborate with colleaguesVvMware Player makes it easy for support,
development, and QA to share customer scenarios in virtuddinesc

Features in VMware Player

VMware Player is a free desktop application for rmgnvirtual machines. VMware
Player does not include features found in other VMwasucts, such as the ability to
create virtual machines.

VMware Player provides the following features:

http://vam.vmware.com.The

You can connect, disconnect, and use configured hmstes, including USB
devices, in the virtualmachine.

You can set preferences, such as how devices are displayedvaréN®layer.
You can change the amount of memory allocated to the Mirtaehine.

You can drag and drop files between a Linux or Winddwst and a Linux,
Windows, or Solaris guest.(Linux hosts and Linux amda®s guests must be
running X Windows.) You can use this feature if thepersvho created the
virtual machine you are running also installed VMware Taols. i

You can copy and paste text between a Windows or Linast and a Windows,
Linux, or Solaris guest.

You can use this feature if the person who createdvitiual machine you are
running also installed VMware Tools in it.

You can copy and paste files between a Windows orxdirast and a Windows,
Linux, or Solaris guest.

You can use this feature if the person who createdvitiual machine you are
running also installed VMware Tools in it.

To install VMware Player on a Linux host

1 Log on to your Linux host with the user name ytango use when running VMware
Player.

2 In a terminal window, become root so you can perform thialimstallation steps:

Su -

3 Mount the VMware Player GIROM.

4 Change to the Linux directory on the CD.

5 To use the RPM installer, skip to Step 6. To use the tar imstallew these steps:

ftmp:

a. If you have a previous tar installation, delete ¥tMware Player distribution
directory before installing from a tar file again. Thlefault location of this
directory is:

Itmp/vmware-player-distrib

b Copy the tar archive to a temporary directoryyoar hard drive, for example,

cp VMware-<xxxx>.tar.gz /tmp

VMware-<xxxx>.tar.gz is the installation file. (In théeiname, <xXxXx-xxxx> is a
series of numbers representing the version and build msmbe

¢ Change to the directory to which you copied the file:

cd /tmp
d Unpack the archive:
tar zxpf VMware-<xxxx>.tar.gz
e Change to the installation directory:
cd vmware-player-distrib
f Run the installation program:
Jvmware-install.pl
g Press return to accept the default values at the prompts.
h Press return (Yes) when prompted to run vmware-config.pl.
I Skip to Step 7.
Adding Guest OS
To install the OS from an ISO image in a virtual machine:
1. Save the ISO image file in any location accessible tolyost: For example:
Windows: C:\Temp or % TEMP%
Linux: /tmp or /usr/tmp

Note: For best performance, place this image on ds tomputer's hard drive. However, to
make the ISO image accessible to multiple users, gawatso place the ISO image on a network
share drive (Windows) or exported filesystem (Linuk)your OS install spans multiple discs,

you need to use an ISO image of each disc and piace all of them in a location accessible to
the host.

2. Create a new virtual machine. Go to File > New > Virtual Machine

3. Select Typical to accept Workstation's recommgoada for various settings (such as
processors, RAM, and disk controller type). Select @usif you want to select these options
yourself.

4. On the Guest Operating System Installation screeenvnompted where to install from,
select Installer disc image file (iso).

5. Click Browse, and navigate to the location where you sdeetSiO image file.
6. Click next, and proceed through the new virtual machine dizar

7. Before you click Finish, to create the virtual miae, deselect Power on this virtual machine
after creation.

8. Edit the virtual machine settings so that itsuatr CD/DVD device is configured to use the
ISO image rather than the physical CD/DVD drive:

a.Select the tab for the virtual machine you just created.
b.Click Edit virtual machine settings.
¢.On the Hardware tab, select the CD/DVD drive.
d.On the right side:
I.Select Connect at power on.
ii.Use ISO image file.
iii.Click Browse and navigate to where you saved the ISO infilge
e.Click OK.
9. Power on the virtual machine.

When you are finished installing the guest OS, you canteglitittual machine settings so that it
is once more set to use the host computer's physical drive.orootcheed to leave the drive set
to connect at power on.

A. SUMMARY

X/
°e

X/
°

X/
°e

X/
°e

An operating system is software that manages the wmnphardware, as well as
providing an environment for application progranesrtin. Perhaps the most visible
aspect of an operating system is the interfacédvéocomputer system it provides to the
human user.

For a computer to do its job of executing prograthg, programs must be in main
memory. Main memory is the only large storage ares the processor can access
directly. It is an array of bytes, ranging in sizenh millions to billions. Each byte in
memory has its own address.

The main memory is usually a volatile storage detta loses its contents when power
Is turned off or lost. Most computer systems proddeondary storage as an extension of
main memory.

Secondary storage provides a form of nonvolatdeaste that is capable of holding large
guantities of data permanently. The most common skgrstorage device is a
magnetic disk, which provides storage of both programs aiad dat

The wide variety of storage systems in a computer systernecarganized in a hierarchy
according to speed and cost. The higher levels xgrensive, but they are fast. As we
move down the hierarchy, the cost per bit generadlgrelases, whereas the access time
generally increases.

There are several different strategies for desgrircomputer system. Single-processor
systems have only one processor, while multiprocesgstems contain two or more
processors that share physical memory and peripheraledevic

The most common multiprocessor design is symmettiltipnocessing (or SMP), where
all processors are considered peers and run indeptndof one another. Clustered
systems are a specialized form of multiprocessotesys and consist of multiple
computer systems connected by a local-area network.

To best utilize the CPU, modern operating systempl@mmultiprogramming, which
allows several jobs to be in memory at the same times é€nsuring that the CPU always
has a job to execute. Time-sharing systems are #gnsgn of multiprogramming
wherein CPU scheduling algorithms rapidly switch betwgabs, thus providing the
illusion that each job is running concurrently.

The operating system must ensure correct operafidime computer system. To prevent
user programs from interfering with the proper ogeratf the system, the hardware has

X/
°

X/
o

X/
°oe

7
A X4

K/

7
A X4

two modes: user mode and kernel mode. Various ingingi(such as I/O instructions
and halt instructions) are privileged and can be exeartbdin kernel mode.

The memory in which the operating system resides nalsbt be protected from
modification by the user. A timer prevents infiniteops. These facilities (dual mode,
privileged instructions, memory protection, and tinmgerrupt) are basic building blocks
used by operating systems to achieve correct operation.

A process (or job) is the fundamental unit of workan operating system. Process
management includes creating and deleting procemseésproviding mechanisms for
processes to communicate and synchronize with each other.

Operating systems must also be concerned with prmogeand securing the operating

system and users. Protection measures control thes@of processes or users to the
resources made available by the computer systenuri§emeasures are responsible for
defending a computer system from external or internatksta

Several data structures that are fundamental toputen science are widely used in
operating systems, including lists, stacks, queuegs,trbash functions, maps, and
bitmaps.

The free software movement has created thousandpesf-source projects, including
operating systems. Because of these projects, studemtable to use source code as a
learning tool. They can modify programs and testmthielp find and fix bugs, and
otherwise explore mature, full-featured operating esys, compilers, tools, user
interfaces, and other types of programs.

Operating systems provide a number of services. Albilest level, system calls allow a
running program to make requests from the operaysgem directly. At a higher level,
the command interpreter or shell provides a mechari® a user to issue a request
without writing a program.

Commands may come from files during batch-mode diatwor directly from a terminal
or desktop GUI when in an interactive or time-shamedde. System programs are
provided to satisfy many common user requests.

The types of requests vary according to level. Tratesy-call level must provide the
basic functions, such as process control and fite dgvice manipulation. Higher-level
requests, satisfied by the command interpreter desyprograms, are translated into a
sequence of system calls.

System services can be classified into several cagsgoprogram control, status
requests, and I/O requests. Program errors can be consiugiat requests for service.

The design of a new operating system is a major tagkimportant that the goals of the
system be well defined before the design begins. tJpe of system desired is the
foundation for choices among various algorithms andegjias that will be needed.

Throughout the entire design cycle, we must be chtefseparate policy decisions from
implementation details (mechanisms). This separasibows maximum flexibility if
policy decisions are to be changed later.

A process is a program in execution. As a processuggcit changes state. The state of
a process is defined by that pracesurrent activity. Each process may be in one of the
following statesnew, ready, running, waiting, or terminated.

Each process is represented in the operating sysyeits ownprocess control block
(PCB).

A process, when it is not executing, is placed in some waitingeqUéere are two major
classes of queues in an operating systéinrequest queues and the ready queue.

The ready queue contains all the processes thatady to execute and are waiting for
the CPU. Each process is represented by a PCB.

The operating system must select processes fromugascheduling queues. Long-term
(job) scheduling is the selection of processes that willlbevad to contend for the CPU.

Normally, long-term scheduling is heavily influenced by resource-allocation
considerations, especially memory management.

Short-term (CPU) schedulingis the selection of one process from the ready queue.

A thread is a flow of control within a process. A muitiéaded process contains several
different flows of control within the same address gpdthe benefits of multithreading
include increased responsiveness to the user, msaharing within the process,
economy, and scalability factors, such as more efficisatofl multiple processing cores.

User-level threads are threads that are visiblaggtogrammer and are unknown to the
kernel. The operating-system kernel supports andages kernel-level threads. In
general, user-level threads are faster to createnaamhge than are kernel threads,
because no intervention from the kernel is required.

Three different types of models relate user andédahreads. Thenany to- one model
maps many user threads to a single kernel thread.

Theone-to-one modemaps each user thread to a corresponding kernel thread.

Themany-to many model multiplexes many user threads to a smaller or equdieruoh
kernel threads.

Most modern operating systems provide kernel supfpmr threads. These include
Windows, Mac OS X, Linux, and Solaris.

Thread libraries provide the application programmeth an API for creating and
managing threads.

Three primary thread libraries are in common #@SIX Pthreads,Windows threads,
and Java threads.

In addition to explicitly creating threads using tAPI provided by a library, we can use
implicit threading, in which the creation and managetrof threading is transferred to
compilers and run-time libraries.

Strategies for implicit threading includbread pools, OpenMP, and Grand Central
Dispatch.

Multithreaded programs introduce many challenges gmogrammers, including the
semantics of théork() and exec() system calls

Other issues includsignal handling, thread cancellation, thread-local sirage, and
scheduler activations.

Given a collection of cooperating sequential proegthat share data, mutual exclusion
must be provided to ensure that a critical seabboode is used by only one process or
thread at a time.

Typically, computer hardware provides several openatithat ensure mutual exclusion.
However, such hardware based solutions are too complicatecd&irdevelopers to use.

Mutex locks and semaphoresvercome this obstacle. Both tools can be used lte@ so
various synchronization problems and can be impléeterefficiently, especially if
hardware support for atomic operations is available.

Various synchronization problems (such as the boduidéfer problem, he readers
writers problem, and the dining-philosophers problem)raportant mainly because they
are examples of a large class of concurrency-cbptablems. These problems are used
to test nearly every newly proposed synchronization scheme

The operating system must provide the means tadgagatinst timing errors, and several
language constructs have been proposed to deathvesie problems. Monitors provide a
synchronization mechanism for sharing abstract data.types

A condition variable provides a method by which anftar function can block its
execution until it is signaled to continue.

Operating systems also provide support for synchatimn. For example, Windows,
Linux, and Solaris provide mechanisms suchsasiaphores, mutex locks, spinlocks,
and condition variablesto control access to shared data.

The Pthreads API provides support for mutex locks serdaphores, as well as condition
variables.

Several alternative approaches focus on synchrooizdbr multicore systems. One
approach uses transactional memory, which may addsgsshronization issues using
either software or hardware techniques.

Another approach uses the compiler extensions offeyegdpenMP. Finally, functional
programming languages address synchronization issudisddjowing mutability.

CPU scheduling is the task of selecting a waitingcpss from the ready queue and
allocating the CPU to it. The CPU is allocated to the selectegsdy the dispatcher.

First-come, first-served (FCFS) schedulings the simplest scheduling algorithm, but it
can cause short processes to wait for very long processes.

>

X/
L X4

Shortest job- first (SJF) schedulingis provably optimal, providing the shortest average
waiting time. Implementing SJF scheduling is difficidlowever, because predicting the
length of the next CPU burst is difficult. The SJgogsithm is a special case of the
general priority scheduling algorithm, which simplNoeates the CPU to the highest-
priority process. Both priority and SJF schedulingyrsuffer from starvation. Aging is a
technique to preverstarvation.

Round-robin (RR) scheduling is more appropriate for a time-shared (interactive)
system. RR scheduling allocates the CPU to the fimstess in the ready queue for q
time units, where ¢ is the time quantum. After q timmetsy if the process has not
relinquished the CPU, it is preempted, and the protegait at the tail of the ready
queue.

The major problem is the selection of the time quamntli the quantum is too large, RR
scheduling degenerates to FCFS scheduling. If thetgoais too small, scheduling
overhead in the form of context-switch time becomes exeessi

The FCFS algorithm is nonpreemptive; the RR alporiis preemptive. The SJF and
priority algorithms may be either preemptive or nonpreerap

Multilevel queue algorithms allow different algorithms to be used for differetdsses
of processes. The most common model includes growed interactive queue that uses
RR scheduling and a background batch queue that uses FGFeibilaud).

Multilevel feedback queuesallow processes to move from one queue to another.

A dead locked state occurs when two or more processewaiting indefinitely for an
event that can be caused only by one of the wagingesses. There are three principal
methods for dealing with deadlocks:

» Use some protocol to prevent or avoid deadlocks,ramgsthat the system will
never enter a deadlocked state.

» Allow the system to enter a deadlocked state, detect it, anddbever.

* Ignore the problem altogether and pretend that Ideksl never occur in the
system.

The third solution is the one used by most opegasgstems, including Linux and
Windows.

A deadlock can occur only if four necessary condgidold simultaneously in the
system: mutual exclusion, hold and wait, no preemption, and ccular wait. To
prevent deadlocks, we can ensure that at least onlkeeohecessary conditions never
holds.

Hardware support - A simple base register or a baleit register pair is sufficient for
the single- and multiple-partition schemes, whereagingaand segmentation need
mapping tables to define the address map.

Performance - As the memory-management algorithm becomes more leximhe time
required to map a logical address to a physicatems$dncreases. For the simple systems,
we need only compare or add to the logical addregeerations that are fast. Paging and

X/
o

X/
°

segmentation can be as fast if the mapping tablepéemented in fast registers. If the
table is in memory, however, user memory accesses eatetwaded substantially. A
TLB can reduce the performance degradation to an accepdable

Fragmentation - A multiprogrammed system will generally perform mofgceently if
it has a higher level of multiprogramming. For aegivset of processes, we can increase
the multiprogramming level only by packing more processesmemory.

Relocation - One solution to the external-fragmentation problesn compaction.
Compaction involves shifting a program in memorysuth a way that the program does
not notice the change. This consideration requires libgical addresses be relocated
dynamically, at execution time. If addresses arecagkd only at load time, we cannot
compact storage.

Swapping - Swapping can be added to any algorithm. At intervatermnined by the
operating system, usually dictated by CPU-schedulingipsliprocesses are copied from
main memory to a backing store and later are copied backitomnamnory.

Virtual memory is commonly implemented by demand paging. Pure denpagihg
never brings in a page until that page is referenced.

The first reference causes a page fault to the tpgraystem. The operating-system
kernel consults an internal table to determine whleeepage is located on the backing
store. It then finds a free frame and reads the page in Fetacking store.

The page tableis updated to reflect this change, and the insbndhat caused the page
fault is restarted. This approach allows a processiioeven though its entire memory
image is not in main memory at once. As long as tlge{fault rate is reasonably low,
performance is acceptable.

Disk-scheduling algorithms can improve the effectbandwidth, the average response
time, and the variance in response time.

Algorithms such asSSTF, SCAN, C-SCAN, LOOK, and C-LOOK are designed to

make such improvements through strategies for dislie ordering. Performance of
disk-scheduling algorithms can vary greatly on magnesicsd In contrast, because solid-
state disks have no moving parts, performance véititssamong algorithms, and quite
often a simple FCFS strategy is used.

The operating system manages the disk blocks. Ridisk must be low level- formatted
to create the sectors on the raw hardwanew disks usually come preformatted.

A file is an abstract data type defined and implementethéyperating system. It is a
sequence of logical records. A logical record mayhl®ste, a line (of fixed or variable
length), or a more complex data item. The operatirglesy may specifically support
various record types or may leave that support to the apphgarogram.

The major task for the operating system is to neplagical file concept onto physical
storage devices such as magnetic disk or tape. Since thieglhgcord size of the device
may not be the same as the logical record size,aif be necessary to order logical
records into physical records. Again, this task maguygported by the operating system
or left for the application program.

Each device in a file system keeps a volume tabtmofents or a device directory listing
the location of the files on the device. In addition, it iSulde create directories to allow
files to be organized.

A single-level directoryin a multiuser system causes naming problems, siacke e
must have a unique name.

A two-level directory solves this problem by creating a sepadatectory for each user’s
files. The directory lists the files by name andludesthe file’s location on the disk,
length, type, owner, time of creation, time of last use, and so on.

Disks are segmented into one or more volumes, eactainong a file system or left

(13 2

raw.

File systems may be mounted into the system’s naming Structures to make them
available. The naming scheme varies by operating system.r@maeted, the files within
the volume are available for use. File systems maynpeounted to disable access or for
maintenance.

The file system resides permanently on secondanag, which is designed to hold a
large amount of data permanently. The most commoanskary-storage medium is the
disk.

Physical disks may be segmented into partitionsdotrol media use and to allow
multiple, possibly varying, file systems on a single spindle.

These file systems are mounted onto a logical fy&tesn architecture to make them
available for use. File systems are often implenteimea layered or modular structure.
The lower levels deal with the physical propertiestofage, devices. Upper levels deal
with symbolic file names and logical properties dédi Intermediate levels map the
logical file concepts into physical device properties.

Any file-system type can have different structurad algorithms. A VFS layer allows

the upper layers to deal with each file-system typgormly. Even remote file systems
can be integrated into the system’s directory structure and acted on by standard system
calls via the VFS interface.

B. QUESTION BANK
UNIT -1

Part- A
1. What is an Operating System?

An operating system is a program that manadws domputer hardware. It also
provides a basis for application programs actd as an intermediary between a user of a
computer and the computer hardware. It conteosid coordinates the use of the hardware
among the various application programs for the varioususer

2. Why is the Operating System viewed as a resource allocat&rcontrol program?

A computer system has many resouredsmrdware & software that may be required to
solve a problem, like CPU time, memory space, fileegjerspace, 1/0 devices & so on. The OS
acts as a manager for these resources so it ietlie® a resource allocator. The OS is viewed
as a control program because it manages the executionrgfragrams to prevent errors &
improper use of the computer.

3. What is the Kernel?

A more common definition is that the OS is the onsgpm running at all times on the
computer, usually called the kernel, with all else beingiegubn programs.

4. What are Batch Systems?

Batch systems are quite appropriate for exegutiarge jobs that need little
interaction. The user can submit jobs and returer lfgr the results. It is not necessary to wait
while the job is processed. Operators batched toggther with similar needs and ran them
through the computer as a group.

5. What is the advantage of Multiprogramming?

Multiprogramming increases CPU utilization bygamizing jobs so that the CPU
always has one to execute. Several jobs are placdteimain memory and the processor is
switched from job to job as needed to keep sevgobdlks advancing while keeping the
peripheral devices in use. Multiprogramming is thet finstance where the Operating system
must make decisions for the users. Therefore they arg $ajphisticated.

6. What is an Interactive Computer System?

Interactive computer system provides direct commation between the user and the system.
The user gives instructions to the operating sysieto a program directly, using a keyboard or
mouse, and waits for immediate results.

7.What do you mean by Time-Sharing Systems?

Time-sharing or multitasking is a logical extensafmultiprogramming. It allows many

users to share the computer simultaneously. TR& executes multiple jobs by switching
among them, but the switches occur so frequentlyti®ausers can interact with each program
while it is running.

8.What are Multiprocessor Systems & give their advantages?

Multiprocessor systems also known as parallel systemtightly coupled systems are
systems that have more than one processor in clwsenunication, sharing the computer bus,
the clock and sometimes memory & peripheral devices. Ting@in advantages are,

% Increased throughput
+ Economy of scale

% Increased reliability

9.What are the different types of Multiprocessing?

Symmetric multiprocessing (SMP): In SMP each processor runs an identical copy of the OS

& these copies communicate with one another as needed.o&kssors are peers.

Examples are Windows NT, Solaris, Digital UNIX, and OS/2 & Linux.

Asymmetric multiprocessing: Each processor is assigned a specific task. A master
processor controls the system; the other gsms look to the master for instructions or
predefined tasks. It defines a master-slave relationship.

Example: SunOS Version 4.
10. What is Graceful Degradation?

In multiprocessor systems, failure of one processor will afttthe system, but only slow
it down. If there isten processors & if any ofads then the remaining nine processors pick
up the work of the failed processor. This abilityctmtinue providing service is proportional to
the surviving hardware is called graceful degradation.

11. What is Dual- Mode Operation?

The dual mode operation provides us with theams for protecting the operating
system from wrong users and wrong users from onéhandt/ser mode and monitor mode are
the two modes. Monitor mode is also called supervisode, system mode or privileged mode.
Mode bit is attached to the hardware of the compuaterder to indicate the current mode. Mode
bit is ‘0’ for monitor mode and ‘1’ for user mode.

12. What are Privileged Instructions?

Some of the machine instructions that may cause hara system are designated as
privileged instructions. The hardware allows the petyed instructions to be executed only in

monitor mode.
13. How can a user program disrupt the normal operations of a sgem?
A user program may disrupt the normal operation of a system by
¢ Issuing illegal I/O operations
% By accessing memory locations within the OS itself
% Refusing to relinquish the CPU
14. How is the protection for memory provided?

The protection against illegal memory access isedoy using two registers. The base
register and the limit register. The base registdd$ithe smallest legal physical address; the
limit register contains the size of the range. bBase and limit registers can be loaded only by
the OS using special privileged instructions

15. What are the various OS Components?

The various system components are,
" Process management

Main-memory maanagement
File management

I/O-system management
Secondary-storagye management
Metworking
Protection system
Command-interpreter system

16. What is a Process?

A process is a program in execution. It is thm@t of work in a modern operating
system. A process is an active entity with a prograomter specifying the next instructions to
execute and a set of associated resourcedsdt ircludes the process stack, containing
temporary data and a data section containing global Vesiab

17. What is a Process State and mention the various States ofra¢ess?

As a process executes, it changes state. The stat@roicess is defined in part by the
current activity of that process.

Each process may be in one of the following states:
New
Running
Waiting
Ready
Terminated

18. What is Process Control Block (PCB)?

Each process is represented in the operating sysfemprocess control block also called

a task control block. It contains many pieces énmation associated with a specific process. It
simply acts as a repository for any inforimathat may vary from process to process. It
contains the following information:

Process state

Program counter

CPU registers

CPLU-scheduling informnation

Memory-management irinformation

Accounting information

/O status information

19. What is the use of Job Queues, Ready Queues & Device Queues?

As a process enters a system, they are put into gu@be. This queue consists of all jobs
in the system. The processes that are residing in mamory and are ready & waiting to
execute are kept on a list called ready queue. iBh@fl processes waiting for a particular 1/0
device is kept in the device queue.

20. What is meant by Context Switch?

Switching the CPU to another process requires saviagstate of the old process and
loading the saved state for the new process. Thisisaknown as context switch. The context of
a process is represented in the PCB of a process.

21. What is Spooling?

Spooling meansSimultaneous Peripheral Operations On Line It is a high-speed
device like a disk is interposed between a runnirggyram and a low-speed device involved
with the program in input/output. It disassociatasirening program from the slow operation of
devices like printers.

22. What are System Calls?

System calls provide the interface betweerpracess and the Operating system.
System Calls are also called as Monitor aall Operating-system function call. When a
system call is executed, it is treated as by thelvare as software interrupt. Control passes
through the interrupt vector to a service routine in theaipe system, and the mode bit is set to
monitor mode.

23. List the services provided by an Operating System?
Program execution
1/} Operation
File-System manippulation
Communications
Error detection

24. What are the two types of Real Time Systems?
Hard real time system
Soft real ime system

25. What is the difference between Hard Real Time System and fB&eal Time System?

A hard real time system guarantees that criticidstasmplete on time. In a soft real time
system, a critical real-time task gets priority othex other tasks, and retains that priority until it
completes. Soft real time systems have more limited uthiéy tlo hard real-time systems.

26. Write the difference between Multiprogramming and Non - Mutiprogramming?

The operating system picks and begins to execute ainthe jobs in the memory.
Eventually, the job may have to wait for some taskhsas a tape to be mounted, or an I/O
operation to complete. In a non-multiprogrammedesys the CPU would sit idle. In a
multiprogramming system, the operating system simply sest¢th and executes another job.

When that job needs to wait, the CPU is switched tehengob, and so on. Eventually, the first
job finishes waiting and gets the CPU back. Asgloas there is always some job to
execute, the CPU will never be idle.

27. What are the design goals of an Operating System?

The requirements can be divided into two basic gsoupser goals and System
goals.Users desire that the system should be comieamel easy to use, easy to learn, reliable,
safe and fast. The Operating system should be ea$ysign, implement, and maintain. Also it
should be flexible, reliable, error free and edint. These are some of the requirements,
which are vague and have no general solution.

28. What are the five major categories of System Calls?
Process Control
File-management
Device-management
Information maintenance
Communications

29. What is the use of Fork and Execve System Calls?

Fork is a System calls by which a new process isede&xecve is also a System call,
which is used after a fork by one of the two procedeeeplace the process memory space
with a new program.

30. Define Elapsed CPU time and Maximum CPU time?
Elapsed CPU Time: Total CPU time used by a process to date.
Maximum CPU Time: Maximum amount of CPU time a process may use.
PART - B (16 MARKS)
1. Explain the various types of computer systems.
2. Explain how protection is provided for the hardware ressubgy the operating system.

3. What are the system components of an operating systemaathehem?

4. What are the various process scheduling concepts?
5. Explain about inter process communication.

6. List five services provided by an operating system. Explew each provides convenience to
the users. Explain also in which cases it would be impossiblesér level programs to
provide these services.

7. Explain the System Structure of Operating System.

8. Explain the concept of Virtual Machine with neat sketch.
9. Explain Client-Server communication with an example.
10. Explain the various threading issues.

UNIT -1l
Part — A

1. Whatis a Thread?

A thread otherwise called a lightweight process @)W a basic unit of CPU utilization, it comprises
of a thread id, a program counter, a register setastdck. It shares with other threads belongingh¢o
same process its code section, data sectiohpperating system resources such as open files and
signals.

2. What are the benefits of Multithreaded Programming?
The benefits of multithreaded programming can be brokemdiato four major categories:
% Responsiveness
% Resource sharing
s Economy
+¢ Utilization of multiprocessor architectures

3. Define Thread Cancellation & Target Thread.

The thread cancellation is the task of termmgata thread before it has completed.
A thread that is to be cancelled is often refereedd the target thread. For example, if multiple
threads are concurrently searching through a ds¢éalbad one thread returns the result, the
remaining threads might be cancelled.

4. What are the different ways in which a Thread can be cancell?
Cancellation of a target thread may occur in two differemaies:

Asynchronous cancellation: One thread immediately terminates the target
thread is called asynchronous cancellation.

Deferred cancellation: The target thread can periodically check if it ddou
terminate, allowing the target thread an opportutotyerminate itself in an orderly
fashion.

5. Define CPU Scheduling.

CPU scheduling is the process of switching @RU among various processes. CPU
scheduling is the basis of multiprogrammed opegatipgstems. By switching the CPU among
processes, the operating system can make the computer noduetp/e.

6. What is Preemptive and Non - Preemptive scheduling?

Under non - preemptive scheduling once the CPU has beentatldcaa process, the process
keeps the CPU until it releases the CPU eithg terminating or switching to the
waiting state.

Preemptive scheduling can preempt a process whicttiliging the CPU in between its
execution and give the CPU to another process.

7. What is a Dispatcher?

The dispatcher is the module that gives controlhef €PU to the process selected by the
short-term scheduler. This function involves:
Switching context
Switching to user mode
Jumping to the proper location into the user program to restaripttoggram.

8. What is Dispatch Latency?

The time taken by the dispatcher to stop one peoaed start another running is known as
dispatch latency.

9. What are the various scheduling criteria for CPU Schedulig?

The various scheduling criteria are,
CPU utilization

Throughput
Turnaround time
Waiting time

Response time
10. Define Throughput?

Throughput in CPU scheduling is the number of preegshat are completed per unit time.
For long processes, this rate may be onecegs per hour; for short transactions,
throughput might be 10 processes per second.

11. What is Turnaround Time?

Turnaround time is the interval from the time obsussion to the time of completion of

a process. It is the sum of the periods spent wattnget into memory, waiting in the ready
gueue, executing on the CPU, and doing I/O.

12. Define Race Condition.

When several process access and manipulate sdaw@ concurrently, then the
outcome of the execution depends on particularrardevhich the access takes place is called
race condition. To avoid race condition, only onecpss at a time can manipulate the shared
variable.

13. What is Critical Section problem?

Consider a system consists of ‘n‘processes. Each process has segment of code called a
critical section, in which the process may be chapgiommon variables, updating a table,
writing a file. When one process is executimgits critical section, no other process can
allowed executing in its critical section.

14. What are the requirements that a solution to the Critical 8ction Problem must satisfy?

The three requirements are,
Mutual exclusion
Progress
Bounded waiting

15. Define Entry Section and Exit Section.

The critical section problem is to design a @cot that the processes can use to
cooperate. Each process must request permissiamtdo ies critical section. The section of the
code implementing this request is the entry secfldre critical section is followed by an exit
section. The remaining code is the remainder section.

16. Give two hardware instructions and their deghitions which can be used for
implementing Mutual Exclusion.
Test And Set
boolean TestAndSet (boolean &target)
{

boolean rv = target;
target = true;
return rv;
}
Swap
void Swap (boolean &a, boolean &b)

boolean temp = a;
a=b;
b = temp;

17. What is a Semaphore?

A semaphore ‘S’ is a synchronization tool which is an integer value that, apart
from initialization, is accessed only through two standavthett operations; wait and signal.

Semaphores can be used to deal with the n-process crtat@rsproblem. It can be also used to
solve various synchronization problems.

The classic definition of ‘wait’
wait (S)

while (S<=0)
S-;
}

The classic definition of ‘signal’
signal (S)
{

}
18. Define Busy Waiting and Spinlock.

S++;

When a process is in its critical section, any ofrecess that tries to enter its critical
section must loop continuously in the entry codeasTé called as busy waiting and this type of
semaphore is also called a spinlock, because the processwalting for the lock.

20. How can we say the First Come First Served scheduling algthm is Non Preemptive?

Once the CPU has been allocated to the process, thegsgrieeps the CPU until it
releases, either by terminating or by requgstif©. So we can say the First Come First
Served scheduling algorithm is non preemptive.

21. What is Waiting Time in CPU scheduling?

Waiting time is the sum of periods spent waitingthie ready queue. CPU scheduling
algorithm affects only the amount of time that a processdspeniting in the ready queue.

22. What is Response Time in CPU scheduling?

Response time is the measure of the time from ubenssion of a request until the first
response is produced. Response time is amount efititakes to start responding, but not the
time that it takes to output that response.

23. Differentiate Long Term Scheduler and Short Term Scheder

The long-term scheduler or job scheduler seleadsgsses from the job pool and loads them into
memory for execution.

The short-term scheduler or CPU scheduler seleota fimong the process that are ready to
execute, and allocates the CPU to one of them.

24. Write some classical problems of Synchronization?

[he Bounded-Buffer Problem

[he Readers-Writers Problem
[he Dining Philosophers Problem
25. When the error will occur when we use the Semaphore?

When the process interchanges the order in which the wait and signal operations
on

the semaphore mutex.
When a process replaces a signal {mutex) with wait {mutex).
When a process omits the wait (mutex), or the signal {(mutex). or both.
26. What is Mutual Exclusion?

A way of making sure that if one processusing a shared modifiable data, the
other processes will be excluded from doing the stdmmg. Each process executing the shared
data variables excludes all others from doing so simultgsteoThis is called mutual exclusion.

27. Define the term Critical Regions?

Critical regions are small and infrequent so thyatem through put is largely unaffected
by their existence. Critical region is a controusture for implementing mutual exclusion over
a shared variable.

28. What are the drawbacks of Monitors?
Monitor concept is its lack of implementation most commou$ed programming
languages.
['here is the possibility of deadlocks in the case of nested monitor’s calls.

29. What are the two levels in Threads?
Thread is implemented in two ways.
Lser level and Kernel level
30. What is a Gantt Chart?

A two dimensional chart that plots the activity afisit on the Y-axis and the time on the
X-axis. The chart quickly represents how the activities olithits are serialized.

31. Define Deadlock.

A process requests resources; if the resourcesoaravailable at that time, the process
enters a wait state. Waiting processes may nean afpjange state, because the resources they
have requested are held by other waiting processes. Tlatigit is called a deadlock.

32. What is the sequence in which resources may be utilized?

Under normal mode of operation, a process madyize a resource in the

following sequence:

Request: If the request cannot be pranted immediately, then the requesting process
must wait until it can acquire the resource.
Lse: The process can operate on the resource.

Release: The process releases the resource.
33. What are conditions under which a deadlock situation mayree?

A deadlock situation can arise if the following fazonditions hold simultaneously in a
system:
Mutual exclusion
Hold and wait
Mo pre-emplion
Circular wait

34. What is a Resource-Allocation Graph?

Deadlocks can be described more precisely in tefmasdirected graph called a system
resource allocation graph. This graph consistss#taf vertices V and a set of edges E. The set
of vertices V is partitioned into two different typet nodes; P the set consisting of all active
processes in the system and R the set consisting of all cedgpes in the system.

35. Define Request Edge and Assignment Edge.

A directed edge from process Pi to resource typis Begnoted by Pi Rj; it signifies that
process Pi requested an instance of resource typedRs currently waiting for that resource. A
directed edge from resource type Rj to process Pi is eyt RjaPi, it signifies that an instance
of resource type has been allocated to a procesA Birected edge PiaRj is called a request
edge. A directed edge RjaPi is called an assignment edge.

36. What are the methods for Handling Deadlocks?
The deadlock problem can be dealt with in one of the three:ways

llse a protocol to prevent or avoid deadlocks, ensurimgt tthe system will
never enter a deadlock state.

Allow the system to enter the deadlock state, detect it and thererecov
lgnore the problem all together, and pretend that deadlocks newer iocthe system.
37. Define Deadlock Prevention.

Deadlock prevention is a set of methods for ensure dhdeast any one of the four
necessary conditions like mutual exclusion, hold amdt, no pre-emption and circular wait
cannot hold. By ensuring that that at least one @elconditions cannot hold, the occurrence of
a deadlock can be prevented.

38. Define Deadlock Avoidance.

An alternative method for avoiding deadlocks isdquire additional information about
how resources are to be requested. Each requestagdbe system consider the resources
currently available, the resources currently alledao each process, and the future requests and
releases of each process, to decide whether the bewddtisfied or must wait to avoid a possible
future deadlock.

39. What are a Safe State and an Unsafe State?

A state is safe if the system can allocate resoueach process in some order and still
avoid a deadlock. A system is in safe state onlyefd exists a safe sequence. A sequence of
processes <P1,P2,....Pn> is a safe sequence for the current allocatiote stafor each Pi, the
resource that Pi can still request can be satidfigdhe current available resource plus the
resource held by all the Pj, with j<i. if no such sequencgtg&xihen the system state iststd be unsafe.

40. What is Banker’s Algorithm?

Banker’s algorithm is a deadlock avoidance algorithm that is applicable to a
resource-allocation system with multiple instancé®ach resource type. The two algorithms
used for its implementation are:

Safety algorithm: The algorithm for finding out whether or not a systis in a safe
state.

Resource-request algorithm: if the resulting resource-allocation is safe, the
transaction is completed and process Pi is allocédecdsources. If the new state is
unsafe Pi must wait and the old resource-allocation sta¢stisred.

41. Define Logical Address and Physical Address.

address generated by the CPU is referred as logithkess. An address seen by the
memory unit that is the one loaded into themory address register of the memory is
commonly referred to as physical address.

42. What are Logical Address Space and Physical Address Space

The set of all logical addresses generated by argmogs called a logical address space;
the set of all physical addresses correspondindpéect logical addresses is a physical address
space.

43. What is the main function of the Memory-Management Unit?

The runtime mapping from virtual to physicalldeesses is done by a hardware
device called a memory management unit (MMU).

44, What are the methods for dealing the Deadlock Problem?
[Jse a protocol to ensure that the system will never enter a deadlaiek st
Allow the system to enter the deadlock state and then recover.

lgnore the problem all together, and pretend that deadlocks neger iocthe system.

45. Differentiate Deadlock and Starvation.

A set of processes is in deadlock state vewvemy process inthe set is waiting
for an event that can be caused only by the othecgss in the set. Starvation or indefinite
blocking is a situation where processes wait indefinitethiwithe semaphore.

PART -B

1. Write about the various CPU scheduling algorithms.

2. What is critical section problem and explain twogess solutions and multiple process
solutions?

3. Explain what semaphores are, their usage, impleti@ntgiven to avoid busy waiting and
binary semaphores.

4. Explain about critical regions and monitors

5. Explain the various classic problems of synchronization

6. Write note on TSL and SWAP instruction.

7. Give a detailed description about deadlocks and its clieaization
8. Explain about the methods used to prevent deadlocks

9. Explain the Banker’s algorithm for deadlock avoidance.

10. Consider the following set of processes, with ldrggth of the CPU-burst time given in
milliseconds:

Process Burst Time Priority

1. PL 10 3
2. P2 1 1
3. P3 2 3
4, P4 1 4
5, P5 5 2

The processes are assumed to have arrived in the order PB, P2, P5, all at time 0.

a. Draw four Gantt charts illustrating the executidrth@se processes using FCFS,SJF,A non
preemptive priority (a smaller priority number ingd a higher priority), and RR (quantum = 1)
scheduling. (4)

b. What is the turnaround time of each process for each ofhieelsling algorithms (4)
c. What is the waiting time of each process for each of the glthgédlgorithms (4)

d. Which of the schedules in part a results in thaimal average waiting time (over all
processes)?

UNIT - I
Part - A
1. Define Dynamic Loading

To obtain better memory-space utilization dynameding is used. With dynamic loading, a
routine is not loaded until it is called. All routsare kept on disk in a relocatable load format.
The main program is loaded into memory and executede routine needs another routine, the
calling routine checks whether the routine has bHeaded. If not, the relocatable linking loader
is called to load the desired program into memory.

2. Define Dynamic Linking.

Dynamic linking is similar to dynamic loading, rathtbat loading being postponed until
execution time, linking is postponed. This feature@ssally used with system libraries, such as
language subroutine libraries. A stub is includethenimage for each library-routine reference.
The stub is a small piece of code that indicates twlocate the appropriate memory-resident
library routine, or how to load the library if the routine it aveady present.

3. What are Overlays?

To enable a processto be larger than the amount of meatiocated to it, overlays
are used. The idea of overlays is to keep in mematy those instructions and data that are
needed at a given time. When other instructioniaegled, they are loaded into space occupied
previously by instructions that are no longer needed.

4. Define Swapping.

A process needs to be in memory to be executed. Vywa process can be swapped
temporarily out of memory to a backing store arehtbrought back into memory for continued
execution. This process is called swapping.

5. What do you mean by Best Fit?

Best fit allocates the smallest hole thatbigg enough. The entire list has to be
searched, unless it is sorted by size. This strategy protheesmallest leftover hole.

6. What do you mean by First Fit?

First fit allocates the first hole that is big egbu Searching can either start at the
beginning of the set of holes or where the previfisi-fit search ended. Searching can be
stopped as soon as a free hole that is big enough is found.

7. How is memory protected in a paged environment?

Protection bits that are associated with each fraoso®mplish memory protection in a
paged environment. The protection bits can be cliktkgerify that no writes are being made to
a read-only page.

8. What is External Fragmentation?

External fragmentation exists when enough total menymages exists to satisfy a request,
but it is not contiguous; storage is fragmented into a lang&oer of small holes.

9. What is Internal Fragmentation?

When the allocated memory may be slightly larganthhe requested memory, the
difference between these two numbers is internal fragniemtat

10. What do you mean by Compaction?

Compaction is a solution to external fragmentation. Tlemany contents are shuffled to place
all free memory together in one large block. It asgble only if relocation is dynamic, and is
done at execution time.

11. What are Pages and Frames?

Paging is a memory management scheme that petmitshlysical-address space of a process to
be non-contiguous. In the case of paging, physicahong is broken into fixed-sized blocks
called frames and logical memory is broken into blocks os#me size called pages.

12. What is the use of Valid-Invalid Bits in Paging?

When the bit is set to valid, this value indicates that thecaded page is in thgrocess’s
logical address space, and is thus a legal page. If theshidiso invalid, this value indicates that
the page isot in the process’s logical address space. Using the valid-invalid bit traps illegal
addresses.

13. What is the basic method of Segmentation?

Segmentation is a memory management scheme dbpports the user view of
memory. A logical address space is a collectiorsegments. The logical address consists of
segment number and offset. If the offset is legak @dded to the segment base to produce the
address in physical memory of the desired byte.

14. A Program containing relocatable code was createdssuming it would be loaded at
address 0. In its code, the program refers to thdollowing addresses: 50,78,150,152,154.
If the program is loaded into memory starting at lo@ation 250, how do those addresses have
to be adjusted?

All addresses need to be adjusted upward by 250.So theeatlpddresses would be 300,
328, 400, 402, and 404.

15. What is Virtual Memory?

Virtual memory is a technique that allows the exeoutdf processes that may not be
completely in memory. It is the separation of usgidal memory from physical memory. This
separation provides an extremely large virtual mgmehen only a smaller physical memory is
available.

16. What is Demand Paging?

Virtual memory is commonly implemented by demandipggln demand paging, the
pager brings only those necessary pages intoame instead of swapping in a whole
process. Thus it avoids reading into memory pé#uas will not be used anyway, decreasing
the swap time and the amount of physical memory needed.

17. Define Lazy Swapper.

Rather than swapping the entire process inte mamory, a lazy swapper is used.
A lazy swapper never swaps a page into memory unless that padsee wdeded.

18. What is a Pure Demand Paging?

When starting execution of a process with no pag@semory, the operating system
sets the instruction pointer to the first instrantiof the process, which is on a non-memory
resident page, the process immediately faultstfor page. After this page is brought into
memory, the process continues to execute, faultingeasssary until every page that it needs is
in memory. At that point, it can execute with no moreltlauThis schema is pure demand

paging.
19. Define Effective Access Time.

Let p be the probability of a page fault (O£Ep£1). Thkie of p is expected to be close to
0; that is, there will be only a few page faults. The effectivesstime is,

Effective access time = (1-p) * ma + p * page fault time.
ma : memory-access time
20. Define Secondary Memory.

This memory holds those pages that are noseptein main memory. The secondary
memory is usually a high speed disk. It is knownhasswap device, and the section of the disk
used for this purpose is known as swap space.

21. What is the basic approach of Page Replacement?

If no frame is free is available, find one that @ w©urrently being used and free it. A
frame can be freed by writing its contents to swaae, and changing the page table to indicate
that the page is no longer in memory. Now the freath& can be used to hold the page for
which the process faulted.

22. What is the various Page Replacement Algorithms used for aReplacement?
FIFO page replacement
Optimal page replacement
LEL page replacement
LEL approximation page replacement
Counting based page replacement
Page buffering algorithm
23. What are the major problems to implement Demand Paging?

The two major problems to implement demand paging is devejppi
Frame allocation algorithm
Page replacement algorithm

24. What is a Reference String?

An algorithm is evaluated by running it on artgular string of memory references
and computing the number of page faults. The swingiemory reference is called a reference
string

PART - B
1. Explain Dynamic Storage-Allocation Problem
2. Explain about Fragmentation
3. Explain the concept of Paging
4. Explain the types of Page Table Structure
5. Explain about Segmentation in detail.
UNIT =1V

Part — A

1. Whatis a File?

A file is a named collection of related informatithrat is recorded on secondary storage. A file
contains eitheprograms or data. A file has certain “structure” based on its type.

!File attributes: Name, identifier, type, size, location, pratectime, date

1File operations: creation, reading, writing, repositng, deleting, truncating,
appending, renaming

|File types: executable, object, library, source code etc.

2. List the various File Attributes.

A file has certain other attributes, which varpnfi one operating system to another,
but typically consist of these: Name, identifigpe, location, size, protection, time, date and
user identification.

3. What are the various File Operations?

The basic file operations are,
|Creating a file
1Writing a file
'Reading a file
!Repositioning within a file
'Deleting a file
!Truncating a file

4. What is the information associated with an Open File?

Several pieces of information are associated with an olgewliich may be:
File pointer
!File open count
'Disk location of the file
1Access rights

5. What are the different Accessing Methods of a File?

The different types of accessing a file are:

!Sequential access: Information in the file is accessatesgqlly

1Direct access: Information in the file can be acedswithout any particular
order.

|Other access methods: Creating index for the fileexed sequential access
method (ISAM) etc.

6. What is Directory?
The device directory or simply known as directory records infbion-

such as

name, location, size, and type for all files on that partiquéatition. The directory
can be viewed as a symbol table that translates file nanoeth@it directory entries.

7. What are the operations that can be performed on a Directory?

The operations that can be performed on a directory are,
Search for a file
Create a file
Drelete a hile
Fename a file
List directory
Traverse the file system

8. What are the most common schemes for defininthe Logical Structure of
aDirectory?

The most common schemes for defining the logical structuaedotctory
Single-Level Directory
Twao-level Directory
Tree-Structured Directories
Acvelic-Graph Directories
Cieneral Graph Directory

9. Define UFD and MFD.

In the two-level directory structure, each user hags aser file directory (UFD). Each
UFD has a similar structure, but lists only the fildfsa single user. When a job starts the
system’s master file directory (MFD) is searched. The MFD is indexed by the user name or
account number, and each entry points to the UFD for that user.

10. What is a Path Name?

A pathname is the path from the root through alldinglotories to a specified file. In a
two-level directory structure a user name and a file nameedafpath name.

11. What is Access Control List (ACL)?

The most general scheme to implement identity-dég@einaccess is to associate with
each file and directory an access control unit.

12. Define Equal Allocation.

The way to split ‘m’ frames among ‘n’ processes is to give everyone an equal share,
m/n frames. For instance, if there are 93 frames apb&esses, each process will get 18 frames.
The leftover 3 frames could be used as a free-fraaféer pool. This scheme is called equal
allocation.

13. What is the cause of Thrashing? How does the $§s detect thrashing? Once it detects
thrashing, what can the system do to eliminate this problefh

Thrashing is caused by under allocation of the mimh number of pages required by a
process, forcing it to continuously page fault. Tiisteam can detect thrashing by evaluating the
level of CPU utilization as compared to the levehailtiprogramming. It can be eliminated by
reducing the level of multiprogramming.

14. If the average page faults service time 025 ms and a memory access time of
100ns.Calculate the effective access time.
Effective access time = (1-p)*ma + p*page fault time
= (1-p)*100+p*25000000
= 100-100p+25000000*p
= 100 + 24999900p

15. What is Belady’s Anomaly?

For some page replacement algorithms, the pagé rate may increase as the
number of allocated frames increases.

16. What are the different types of Access?

Different types of operations may be controlled in accgss. fyhese are,
Read
Write
Execute
Append
Delete
List

17. What are the types of Path Names?

Path names can be of two types.
Absolute path name: Begins at the root and follows a path down to the

specified file, giving the directory names on the path.
Relative path name: Defines a path from the current directory.

18. What is meant by Locality of Reference?

The locality model states that, as a processutgs, it moves from locality to
locality. Locality is of two types.
Spatial locality
Temporal locality.

19. What are the various layers of a File System?

~

The file system is composed of many differéexels. Each level in the design uses
the feature of the lower levels to create new features foryubaber levels.
Application programs

Logical file system

File-organization nmodule

Basic [ile sysiem

/0 control

Devices

20. What are the Structures used in File-System Implementatn®

Several on-disk and in-memory structures are used to maplea file system
On-disk structure include
Boot contral block
Partition block
Directory structure used to organize the files in File control block (FCB)
In-memory structure include
In-memory partition table
In-memory directory structure
Svstem-wide open file able
Per-process open table

21. What are the Functions of Virtual File System (VFS)?
It has two functions,

It separates file-system-generic operations from their impdatation defining
a clean VFS interface. It allows transparent accessdlifferent types of file
systems mounted locally.

VFS is based on a file representation structure, calledic®. It contains a
numerical value for a network-wide unique file .Therled maintains one vnode
structure for each active file or directory.

22. Define Seek Time and Latency Time.

The time taken by the head to move to the apprigpaglinder or track is called seek
time. Once the head is at right track, it must wattl the desired block rotates under the read-
write head. This delay is latency time.

23. What are the Allocation Methods of a Disk Space?

Three major methods of allocating disk space which are yidelse are
Contiguous allocation
Linked allocation
Indexed allocation

24. What are the advantages of Contiguous Allocation?

The advantages are,
Supports direct access
Supports sequential access
MNumber of disk seeks 15 minimal.

25. What are the drawbacks of Contiguous Allocation of Disk Spa@e

The disadvantages are,
Suffers from external fragmentation
Suffers from internal fragmentation
Difticulty in finding space for a new lile
File cannot be extended
Size of the file is to be declared in advance

26. What are the advantages of Linked Allocation?

The advantages are,
Mo external fragmentation
Size of the file does not need to be declared

27. What are the disadvantages of Linked Allocation?

The disadvantages are,
Used only for sequential access of files.
Direct access is not supported
Memory space required for the pointers.
R.eliability is compromised if the pointers are lost or damaged

28. What are the advantages of Indexed Allocation?

The advantages are,
Mo external-fragmentzation problem
Solves the size-declarzation problems
Supports direct access

29. How can the index blocks be implemented in the Indexed Allatton Scheme?

The index block can be implemented as follows,
Linked scheme
Multilevel scheme
Combined scheme

30. Define Rotational Latency and Disk Bandwidth.

Rotational latency is the additional time waiting floe disk to rotate the desired sector to
the disk head. The disk bandwidth is the total nundbdrytes transferred, divided by the time
between the first request for service and the completitmedfst transfer.

31. How free-space is managed using Bit Vector Implementati?

The free-space list is implemented as a bitp & bit vector. Each block is
represented by 1 bit. If the block is free, the bit is 1; if tlelbls allocated, the bit is O.

32. Define Buffering.

A buffer is a memory area that stores data while Hreytransferred between two devices
or between a device and an application. Buffering is dongifee reasons,
[0 cope with a speed mismatch between the producer and consumer of a data stream
To adapt between devices that have different data-transfer sizes
To support copy semantics tor application /0,

PART - B

-

. Explain the File System Structure in detall

N

. Discuss the File System Organization and File System Muunti
. Explain about File Sharing.

. Explain about the File System Implementation.

o ~ W

. Explain about various Allocation Methods.
6. Write note on (i) Log structured file system
(ii) Efficiency and Usage of disk space

(iii) File system mounting

UNIT -V

PART - A

1. Define Caching.

A cache is a region of fast memory that holds copies of datasatcehe cached copy is
more efficient than access to the original. Cachamg buffering are distinct functions, but
sometimes a region of memory can be used for both purposes.

2. Define Spooling.

A spool is a buffer that holds output for a device, suchiggprthat cannot accept
interleaved data streams. When an application fsigirinting, the spooling system queues the
corresponding spool file for output to theinper. The spooling system copies the queued
spool files to the printer one at a time.

3. What are the various Disk-Scheduling Algorithms?

The various disk-scheduling algorithms are,
First Come First Served Scheduling
Shortest Seek Time First Scheduling
SCAN Scheduling
C-8CAN Scheduling
LOOK scheduling

4. What is Low-Level Formatting?

Before a disk can store data, it must be divided into sed¢tatrsite disk controller can
read and write. This process is called low-level formattinghysical formatting. Low-level
formatting fills the disk with a special data structuredach sector. The data structure for a
sector consists of a header, a data area, and a trailer.

5. What is the use of Boot Block?

For a computer to start running when powered up or reboate@dts to have an initial
program to run. This bootstrap program tends to be simpliedsé the operating system on
the disk loads that kernel into memory and jumps to anliaididress to begin the operating
system execution. The full bootstrap program is stored imtaipa called the boot blocks, at
fixed location on the disk. A disk that has boot partition itedaboot disk or system disk.

6. What is Sector Sparing?

Low-level formatting also sets aside spare asatot visible to the operating system.
The controller can be told to replace each badséagically with one of the spare sectors. This
scheme is known as sector sparing or forwarding.

7. What are the techniques used for performing 1/0.
! Programmed 1/O
nterrupt driven 1/0
| Direct Memory Access (DMA).

8. Give an example of an application in which data in a file ghuld be accessed in the

following order:
Sequentially - Print the content of the file.
Randomly - Print the content of recolid This record can be found using hashing or
index techniques

9. What problems could occur if a system allowed a file systeta be mounted
simultaneously at more than one location?

There would be multiple paths to the same file, which couldisentisers or
encourage mistakes. (Deleting a file with one path deleteiléh in all the other paths.)

10. Why must the bit map for file allocation be kept on mass stage rather than in main
memory?

In case of system crash (memory failure), the free-spstoeduld not be lost as it would
be if the bit map had been stored in main memory.

11. What criteria should be used in deciding which strategg best utilized for a
particular file?

Contiguous -File is usually accessed sequentially, if file is relatiwshall.
Linked - File is usually accessed sequentially, if the file is large
Indexed - File is usually accessed randomly, if file is large.
12. What is meant by RAID?

"RAID" is now used as an umbrella term for computatadstorage schemes that can
divide and replicate data among multiple hard digkes. The different schemes architectures
are named by the word RAID followed by a numbsrin RAID 0, RAID 1, etc. RAID's
various designs involve two key design goals:rease data reliability and/or increase output
performance. When multiple physical disks are petiouuse RAID technology, they are said to
bein aRAID array.

13. What is meant by Stable Storage?

Stable storageis a classification of computer data storagechmology that
guarantees atomicity for any given write operation allows software to be written that is
robust against some hardware and power faildrede considered atomic, upon reading
back a just written-to portion of the disk, the straubsystem must return either the write data
or the data that was on that portion of the disk before the epéeation.

14. What is meant by Tertiary Storag®

Tertiary storage or tertiary memory provides a third level of storage. Typically it
involves a robotic mechanism which witbunt (insert) andlismount removable mass storage
media into a storage device according to the systelmands; this data is often copied to
secondary storage before use.

15. Write a note on Descriptor?

UNIX processes usédescriptors to reference 1/O streams. Descriptors are small
unsigned integers obtained from tbygen andsocket system calls.. Aead or write system
call can be applied to a descriptor to transfer data.

The close system call can be used to deallocate any descrip@scriptors represent
underlying objects supported by the kernel, andcegated by system calls specific to the type
of object. In 4.4BSD, three kinds of objects canrepresented by descriptors: files, pipes,
and sockets.

16. Write short notes on Pipes?

A pipeis a linear array of bytes, as is a file, but itsed solely as an I/O stream, and it is
unidirectional. It also has no name, and thus cabaaipened witlopen.Instead, it is created
by thepipe system call, which returns two descriptors, one ottvliccepts input that is sent
to the other descriptor reliably, without duplicati@and in order. The system also supports a
named pipe or FIFO. A FIFO has properties identicah tpipe, except that it appears in the
file system; thus, it can be opened using dpen system call. Two processes that wish to
communicate each open the FIFO: One opens it for reading, taefothwriting.

PART - B
1. Explain the allocation methods for disk space?
2. What are the various methods for free space management?
3. Write about the kernel 1/0O subsystem.

4. Explain the various disk scheduling techniques
FCFS
SSTF
SCAN
C-SCAN
C-LOOK

5. Write notes about disk management and swap-space mamageme

6. Explain in detail the allocation and freeing the file sjerapace.

7. Explain the backup and recovery of files.

8. Discuss with diagrams the following three disk schedulingSFGSTF, C-SCAN.

9. Compare and contrast the FREE SPACE and SWAP SPACE management

10. Explain the disk scheduling algorithms

11. Describe the most common schemes for defining the lodrcgtuse of a Directory.
12. Explain the life cycle of an I/O request with flowchart.

13. Discuss about the UNIX file system in detail.

14.
15.
16.
17.
18.
19.
20.

Discuss briefly about Memory Management in UNIX.

Explain the process management under LINUX OS.

In what ways the directory is implemented?
Explain linked allocation in detail.
Write the indexed allocation with its performance.
Explain the 1/0 hardware.
Explain in detail about Raid

RAID |

HAILY 2

RAID 3

RAID 4

EAILY

C.PREVIOUS YEAR QUESTION PAPERS

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2010

Fourth Semester
Computer Science and Engineering
CS 2254— OPERATING SYSTEMS
(Common to Information Technology)

(Regulation 2008)

Time : Three hours

Maximum : 100 Marks

Answer ALL questions

PART A — (10 x 2 = 20 Marks)
. List down the functions of operating systems.
. What do you mean by multiprogramming?
. What do you mean by short term scheduler?
. What is a deadlock?
. What is address binding?
. What do you mean by page fault?
. What is a file? List some operations on it.
. What are the various file accessing methods?
. What is rotational latency?
0. What is a swap space?

P OO~NOOUITA,WNE

PART B — (5 x 16 = 80 Marks)

11. (a) (i) Explain how hardware protection can bdeaad and discuss in detail the dual mode
of operations. (Marks 8)

(i) Explain in detail any two operating system structurkkarks 8)
Or

(b) What is meant by a process? Explain statesr@afgss with neat sketch and discuss the
process state transition with a neat diagram. (Marks 16)

12. (a) What is a critical section? Give examples. W4ra the minimum requirements that
should be satisfied by a solution to critical sectproblem? Write Peterson Algorithm for 2-
process synchronization to critical section problem asduds briefly. (Marks 16)

Or
(b) Allocation Maximum Available
abcdabcdabcd
P0O001200121520
P110001750
P213542356
P306320652
P400140656
Answer the following
(i) What is the content of the need matrix?

(i) Is the system in a safe state?

(iii) If the request for process P1 arrives for (0,4,2,0)itde granted immediately. (16)

13. (a) Given memory partition of 100 KB, 500 KB, 200 Ki&d 600 KB (inorder). Show with
neat sketch how would each of the first-fit, bestfid worst fit algorithms place processes of
412 KB, 317 KB, 112 KB and 326 KB (in order). Which @ighm is most efficient in memory
allocation? (Marks 16)

Or
(b) Explain the concept of demand paging. How can denpaging be implemented with virtual
memory? (Marks 16)
14. (a) (i) Explain various file allocation methods in det@flarks 8)
(i) What are the possible structures for directory? Dis¢ism in detail. (Marks 8)
Or
(b) Explain in detail the free space management with negitadia (16)
15. (a) Explain in detail various disk scheduling algorghmith suitable example. (16)
Or
(b) Write short notes on the following :
(i) /O Hardware (Marks 8)

(i) RAID structure. (Marks 8)

B.E./B.Tech DEGREE EXAMINATION, APRIL/MAY 2011
Fourth Semester
Computer Science and Engineering
CS 2254—0OPERATING SYSTEMS
(Common to Information Technology)
(Regulation 2008)
Time : Three hours Maximum : 100 marks
Answer ALL questions
PART A — (10 x 2 = 20 marks)
1. What are the five major categories of system calls?
2. What is the function of system programs? Write the nanteeafdtegories

in which the system programs can be divided.

. Which are the criteria used for CPU scheduling?
. Write the three ways to deal the deadlock problem.

. Define TLB.

3
4
5
6. How do you limit the effects of thrashing?
7. Write the attributes of a file.
8. What is the content of a typical file control block?
9. Write the three basic functions which are provided by theweae clocks and timers.
10. What is storage-area network?

PART B — (5 x 16 = 80 marks)

11. (a) (i) Briefly illustrate how a server communesato a client with a java-based sockets
program. (12)

(ii) Briefly demonstrate how Remote Method Invocation psscworks. (4)
Or
(b) (i) Write about the three common types of threading implaation. (6)

(i) Discuss the threading issues which are considered wiltitimeaded programs. (10)

12. (a) Explain briefly any four CPU scheduling algorithmthvwexamples. (16)
Or
(b) (i) Write short notes on readers-writers problem aedlthing philosophers problem. (8)
(ii) Explain the two solutions of recovery from deadlock. (8)
13. (a) Explain the most commonly used techniques for stragtthe page table. (16)
Or
(b) Explain FIFO, Optimal and LRU page replacement algostitb)
14. (a) Explain the two-level directory and three-structualiesctory. (16)
Or
(b) Give short notes on (16)
(1) Linux file system
(i) windows XP file system

15. (a) Briefly describe the services which are provided by the kernel’s I/O subsystem. (16)

Or
(b) Describe the different forms of disk scheduling. (16)

Eh::.m».:'Ll||[||f|1|||I

Question Paper Code : 10266

B.E/B Tech, DEGREE EXAMINATION, MAYJUNE 201E

Fourth Sementar

Camputer Science and Enginesring
'::Ez;x.aq.rulquwmmt'maﬁmmqmwmm_uum NO B S TEMS
L

(Commaon to Information Technolo

{Regulation 2008
&
Timie : Three haurs \ uit : 100 marks
Answer ALL questi
PART A — {10 » 2 Q
1 What are the main purpoeas of un BEem
2. Whatare the differences I:xw -level threads and keenel-level threade?

3. What s the differencs bet \npm and nonpresmptive echeduling?
4+ What are the four

e
gtk
that are needed for deadlock can mu%ﬁ (TTe
"

AEICEEaddreall space: of eight pages of 1024 words ench, moapped
onte n phyaicnl me ! Hhmm.HlPA'mnyﬁhmthEtemthﬂlﬂﬂ
11 o EECoE pddress? >

5
e of dentand paging? 8T ¥ @"9' AR ana

ek Hmet

t characteristics determing the disk sccess speeds S .L'TI.. 7.

PART B— {5« 18 =) marks)

L F i) Define the enssntial propertaes of the fallowing types of oparaiing

Ellems
| i1l PBateh

(2) Time sharing
| (3} Hesdl thina
!I =y Disteibigod

i List five services provided by an npe.l.-ﬁ.l‘.'i:;'lg Hyetirm

| each provides convenience 0 the usern. Explain alsoll 4 sigans

it would be impossible for user — vl proprames these
Brvices, exeaution, Tip op T i)
e =T Exnng ce bectioi
r

muliple processes?
Bt ane application
{5}

in detail. (8)

B0 What fwo advantaged do chresds e
Eﬂg:.;._, What major disadvantages do thay ha
Iy that would benefit from the use of th

s ()
5, with the length of the
o et e .

W ing. FOFS, SIF a nonpreemplive priority
g priority number implies o higher priority), and {1
i = 1 sehisduling.

- SyEL3)
0P Which of the echedulew in part & results in the mrinimeal
hﬁ nglungt.im: fovak All {12}

n"& i Egliﬁ:;—mip ﬁpmpmzian?
:)

- F B a8
iy
N . 2 B) ne TOme
S . £ LA S T |
; B 13 8 I | & :
pe 1N SR !

13

B iy Whal do you menn by busy waiting? What ather kinds of waiting
pre thers? Cin busy waiting be avoidad altbgether? Explain your
MNEWET. (.1

i) Consider the ollowing snopshot of 0 system:
Aiocetioe Mlax - Avadlable

ey aben amen MEED Avallable

PO eglE eE jHDS Lok 1ok

P e 17 035D

P mame R

A . o

(1% Define safety algerthm.
{2y What i= the content of the matrix Meod”
(3 I=ibhe system in o sate stoie?

1) W a reguest Do process PIoarn

Answer the following questicns besed an the hl_ﬂ;::_r'n ‘}
fﬁoﬁu

for (04,200, eon the:

regquest be pranted mmmedintely? &)
(&) 1 Why are segmentotion and pagedl hinod into one
soheme? i)

() Consder the foliowing page reft
e 2{ 3 4 E,'.}' 5_; G012 3,
Hmir neany page 4 wig
algorithms, assuming

for the follswing replacement
rea, four, five, six mnd seven
feames? Hemsmbor begfore initially empey, so your frst
unicpue pages will all cosBer®anlt each,

b0, 18, 5108 A
(2} FIFO rep|ginge agl&;lh;m;lﬂ,rﬂ;?

(@) Optig /oWt ﬂprrs} g sy (12)
O
by Conm ng segmant tobls
[Ease Length
e He o
1 e w4
2 1M 11
3 13T Een
& T B
tarce the plusseont addresses for the foflowing logical nddresses!?

(1) 0,430 63 I L

L
\ (3 L500) 3, 400 (A

(i) [Hesiee briefly about memory management in LINUX, (&)

- 10266

14 (n) (W)

E7]

i

ihy (i)
(i}
fa] i

o

Explain the various wttributas of a e, (4]

Consder n file curvently consisting of 100 blecks. Assume that the
file contro] block (and the index bleck, in the cnsa of indexod
atlocation) is already in memory. Caleulate T many disle LE¥
aperations are requirad e contigwows; linked, and inderad {eingles
leval) allocation strategies, o, for one block, the followiang conditicns:
hold. In the contiguous allocation case, assums that there is no
roaun b grow in the beginning, but thers is ream to grow in the
Assume that the biock information to be added iz Biored in

(1) “The hlock ts nddad ut the breginning.

() The block is added in the middlo 0
(3] The hiock ia added ot the snd.

(4 The hlock ie removed Trom the beginning. o

5} The block is pemoved from the middio. *

(6 The block is removed from the {12)
Or b/

Explain the vamous schemes used the logieal stroctums

af a directory, (8)

Describe the approaches usail Iﬁg fanagement 8y

Consider the following T) el on o single-uger PO

11} A mouse u hical user nbarface

B OpErsbng eValen (ssume o
nwnilabda)

user files

ese 1) sconarios, would you design the operating
uffiecing, spooling, cuching, or & combinntion? Would
o I00, ar interruptdriven TP _

na for vour chaices, (&)

you choose- & -optimal technigus among the various disk
uling techniques? Explun. 8y

,', O
&Dmﬂbﬂ the various diek scheduling technigues. 16}
{i} Describe the various levels of RAID, {E}

E 10266

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2011.
Fourth Semester
Computer Science and Engineering
CS 2254- OPERATING SYSTEMS
(Common to Information Technology)
(Regulation 2008)
Time : Three hours Maximum : 100 marks
Answer ALL questions.
PART A — (10 x 2 = 20 marks)
. What does the CPU do when there are no user programs to run?
. What is the principal advantage of the multiprogramming?

. Define Mutual Exclusion.

1

2

3

4. What is Semaphore?
5. What is page frame?

6. What is internal fragmentation?
7

. A direct or sequential access has a fixed file-Sizbyte record. At what logical location, the
first byte of record N will start?

8. Give an example of a situation where variable-size recordslwewseful.

9. Writable CD-ROM media are available in both 650 &l 700 MB versions. What is the
principle disadvantage, other than cost, of the 700 MB ve?sion

10. Which disk scheduling algorithm would be best to optintiegoerformance of a RAM disk?
PART B — (5 x 16 = 80 marks)

11. (a) (i) Explain the important services of an operatintesys(8)

(ii) Discuss in detail the concept of virtual machines, witht skatch. (8)
Or

(b) Write detailed notes on process control and file méeijoun. (16)

12. (a) Explain in detail about any two CPU scheduling algostiith suitable examples. (16)
Or

(b) (i) What is a deadlock? What are the necessary corslfitora deadlock to occur? (6)

(i) How can a system recover from deadlock? (10)

13. (a) Explain about contiguous memory allocation with niagirdm. (16)
Or

(b) What do you mean by paging? Discuss in detadutistructure of page tables with
appropriate examples. (16)

14. (a) Write a detailed note on various file access methodsedtt sketch.(16)
Or

(b) Discuss the different file allocation methods withahlg example. (16)

15. (a) Describe the important concepts of applicationrt€face. (16)
Or

(b) Explain any two disk scheduling algorithms with sugadskample. (16)

ﬂtﬂjﬂu--iﬂ il B T

e E
. 2

rﬁuﬂﬂt‘iuu Paper Code : 21304

FLE B ety DO RI BXAMINATION . MAYAL S w13,
Futarth Semmelir
Lioitippuler Besene wivl Eepglosering
U8 ZE54408 AR08 12610144 08 405050950012 — OPRRATING SYSTEMS
(Cammon o Information Technology)
{ Regulation 20082010}

{Common to PTCS 2254 - Dpornting Systems foe BE, (Part-Time) Fourth ssmsctsr
CS5E —Regulaiinn it

Time : Thres hours Moximiogm ¢ 100 tnsris
Aameror ALL guegstiim,

PART A — (1w 2 = 40 moarkss

3. Mention the adviintages in veing mulillprogromming dvatoerie.
2, What are the benefits of multithronds?

Defing mutoal exolusion.
4. Give the necessary condilions [or deadlock to ooyur,

Consider o logical address space of eight pages of 1024 wards each, magped
onts a physical mamory of 32 frames, How many bits ave thers in the Togsenl

address and in the phyvaical address.
B What in moant by Belady's nnomaly?
7. What are the respansibilities ol Filo Munager?
- Mention the two main approaches W identily and redse fres memery &7ea in 4
heap,

9. Define rotational latency.
10, Write s brief note on RAID.

8

11,

(an)

L]

ta)

ihj

PART B — (5 & 16 = 80 marka)

(1) Diseuss multiproceszsar svetems in detail. {8
{11 E:plﬂinihﬂmmmdimpuﬂmufé}'ﬂﬂmmindﬂaﬂwﬂh
examples, 2
Or
Disciss how communication is dane in clisnt servar E¥ELEmE Using remota
procedure calls and remote methed invocation, {162
Discuss the different techniques used for evalunting OPU scheduling
algorithms in detail, (16}
Cir

(1] What is meant by critical section problam? Propose o solution basad
on bakery algorithm. f:)]

{fi} Consider the following snapshot of & system -
PO — Pd are 5 processes present and A, B, C. D are the resources.
The maximum need of a process and the allocatad resouroee details
are given in the tahls,

Anewer the [ollowing based on Banker's algorithm. Each subdivision
CirTiss bwo marks.

(1) Whatia the content of NEED matrix? (2
2] Iethe system in o sede siaka? 3

(8) I w request from procoss PO arrives fur (@, 2, 0) cen the request be
granted immodi ataly, Lf 4]

Allocation Max Avpilnble
A BC A B O A B C
P o 1.0 ¢ 5 4 3 3. 2
Pl 2 Do a g g
P2 3 02 9 0 g

PR 11 g % -3

AT

