
CS2354 Advanced Computer Architecture

SCE 3 Dept of CSE

INDEX

S.NO DATE TOPIC PAGE
NO

UNIT I

INSTRUCTION LEVEL PARALLELISM

1.1 Fundamentals of Computer Design 6

1.2 Measuring and Reporting Performance 10

1.3 Quantitative Principles of Computer Design 13

1.4 Instruction-Level Parallelism: Concepts and
Challenges 15

1.5 Dynamic Scheduling 19

1.6 Hardware speculation 22

1.7 Compiler Techniques for Exposing ILP 24

1.8 Branch Prediction method 27

UNIT II

MULTIPLE ISSUE PROCESSORS

2.1 VLIW Approach 34

2.2 EPIC (Explicitly Parallel Instruction
Computing) 36

2.3
Hardware Support for Exposing More

Parallelism
at Compiler Time

37

2.4 Hardware versus Software Speculation
Mechanisms 42

2.5 IA-64 ARCHITECTURE 42

2.6 Limitations of ILP 45

UNIT III

MULTIPROCESSORS AND THREAD LEVEL PARALLELISM

3.1 Symmetric Shared Memory Architectures 47

3.2 Distributed Shared-Memory Architectures 52

3.3 Synchronization and various Hardware
Primitives 55

3.4 Multithreading exploiting TLP 58

UNIT IV

MEMORY AND I/O

4.1 Cache Performance 61

4.2 Virtual memory & techniques for fast address
translation 70

4.3 Storage Systems 77

CS2354 Advanced Computer Architecture

SCE 4 Dept of CSE

4.4 Buses : Connecting I/O Devices
to CPU/Memory 80

4.5 RAID 83

4.6 Benchmarks of storage performance and
availability 90

4.7 Designing I/O System 93

UNIT V

MULTI-CORE ARCHITECTURES

5.1 Multi-threading 95

5.2 SMT and CMP Architectures 96

5.3 Design Issues 101

5.4 Case Studies: Multicore architecture 104

5.5 IBM Cell Processor 105

Question Bank 110

Glossary 127

Previous Year Question Papers 140

CS2354 Advanced Computer Architecture

SCE 5 Dept of CSE

CS2354 ADVANCED COMPUTER ARCHITECTURE L T P C
3 0 0 3

UNIT I INSTRUCTION LEVEL PARALLELISM 9
ILP - Concepts and challenges - Hardware and software approaches – Dynamic scheduling -
Speculation - Compiler techniques for exposing ILP - Branch prediction.

UNIT II MULTIPLE ISSUE PROCESSORS 9
VLIW & EPIC - Advanced compiler support - Hardware support for exposing parallelism -
Hardware versus software speculation mechanisms - IA 64 and Itanium processors - Limits on
ILP.

UNIT III MULTIPROCESSORS AND THREAD LEVEL PARALLELISM 9
Symmetric and distributed shared memory architectures - Performance issues - Synchronization -
Models of memory consistency - Introduction to Multithreading.

UNIT IV MEMORY AND I/O 9
Cache performance - Reducing cache miss penalty and miss rate - Reducing hit time - Main
memory and performance - Memory technology. Types of storage devices - Buses - RAID -
Reliability, availability and dependability - I/O performance measures - Designing an I/O
system.

UNIT V MULTI-CORE ARCHITECTURES 9
Software and hardware multithreading - SMT and CMP architectures - Design issues - Case
studies - Intel Multi-core architecture - SUN CMP architecture - heterogeneous multi-core
processors - case study: IBM Cell Processor.

TOTAL: 45 PERIODS

TEXT BOOK:
1. John L. Hennessey and David A. Patterson, “Computer architecture - A quantitative
approach”, Morgan Kaufmann / Elsevier Publishers, 4th. Edition, 2007.

REFERENCES:
1. David E. Culler, Jaswinder Pal Singh, “Parallel computing architecture: A hardware/software
approach” , Morgan Kaufmann /Elsevier Publishers, 1999.
2. Kai Hwang and Zhi.Wei Xu, “Scalable Parallel Computing”, Tata McGraw Hill, New Delhi,
2003.

CS2354 Advanced Computer Architecture

SCE 6 Dept of CSE

UNIT I

INSTRUCTION LEVEL PARALLELISM
ILP - Concepts and challenges - Hardware and software approaches – Dynamic scheduling -
Speculation - Compiler techniques for exposing ILP - Branch prediction.

1.1 Fundamentals of Computer Design

Computer technology has made incredible progress in the roughly from last 55 years.
This rapid rate of improvement has come both from advances in the technology used to build
computers and from innovation in computer design. During the first 25 years of electronic
computers, both forces made a major contribution; but beginning in about 1970, computer
designers became largely dependent upon integrated circuit technology.

During the 1970s, performance continued to improve at about 25% to 30% per year for
the mainframes and minicomputers that dominated the industry.

The late 1970s after invention of microprocessor the growth roughly increased 35% per year in
performance. This growth rate, combined with the cost advantages of a mass-produced
microprocessor, led to an increasing fraction of the computer business. In addition, two
significant changes are observed in computer industry.

• First, the virtual elimination of assembly language programming reduced the need for
object-code compatibility.

• Second, the creation of standardized, vendor-independent operating systems, such as UNIX
and its clone, Linux, lowered the cost and risk of bringing out a new architecture.

These changes made it possible to successfully develop a new set of architectures, called
RISC (Reduced Instruction Set Computer) architectures. In the early 1980s. The RISC-based
machines focused the attention of designers on two critical performance techniques, the
exploitation of instruction-level parallelism and the use of caches. The combination of
architectural and organizational enhancements has led to 20 years of sustained growth in
performance at an annual rate of over 50%. Figure 1.1 shows the effect of this difference in
performance growth rates.

The effect of this dramatic growth rate has been twofold.

• First, it has significantly enhanced the capability available to computer users. For many
applications, the highest performance microprocessors of today outperform the
supercomputer of less than 10 years ago.

• Second, this dramatic rate of improvement has led to the dominance of micro-

processor-based computers across the entire range of the computer design.

1.1.1 Technology Trends

The changes in the computer applications space over the last decade have dramatically
changed the metrics. Desktop computers remain focused on optimizing cost-performance as
measured by a single user, servers focus on availability, scalability, and throughput cost-
performance, and embedded computers are driven by price and often power issues.

CS2354 Advanced Computer Architecture

SCE 7 Dept of CSE

If an instruction set architecture is to be successful, it must be designed to survive rapid
changes in computer technology. An architect must plan for technology changes that can
increase the lifetime of a computer.

The following Four implementation technologies changed the computer industry:

Integrated circuit logic technology

Transistor density increases by about 35% per year, and die size increases 10% to 20%
per year. The combined effect is a growth rate in transistor count on a chip of about 55% per
year.

Semiconductor DRAM:

Density increases by between 40% and 60% per year and Cycle time has improved very
slowly, decreasing by about one-third in 10 years. Bandwidth per chip increases about twice as
fast as latency decreases. In addition, changes to the DRAM interface have also improved the
bandwidth.

Magnetic disk technology:

it is improving more than 100% per year. Prior to 1990, density increased by about 30%
per year, doubling in three years. It appears that disk technology will continue the faster density
growth rate for some time to come. Access time has improved by one-third in 10 years.

Network technology:

Network performance depends both on the performance of switches and on the
performance of the transmission system, both latency and bandwidth can be improved, though
recently bandwidth has been the primary focus. For many years, networking technology
appeared to improve slowly: for example, it took about 10 years for Ethernet technology to move
from 10 Mb to 100 Mb. The increased importance of networking has led to a faster rate of
progress with 1 Gb Ethernet becoming available about five years after 100 Mb.

These rapidly changing technologies impact the design of a microprocessor that may,
with speed and technology enhancements, have a lifetime of five or more years.

Scaling of Transistor Performance, Wires, and Power in Integrated Circuits

Integrated circuit processes are characterized by the feature size, which is decreased from
10 microns in 1971 to 0.18 microns in 2001. Since a transistor is a 2-dimensional object, the
density of transistors increases quadratically with a linear decrease in feature size. The increase
in transistor performance, this combination of scaling factors leads to a complex interrelationship
between transistor performance and process feature size.

First approximation, transistor performance improves linearly with decreasing feature
size. In the early days of microprocessors, the higher rate of improvement in density was used to
quickly move from 4-bit, to 8bit, to 16-bit, to 32-bit microprocessors. More recently, density
improvements have supported the introduction of 64-bit microprocessors as well as many of the
innovations in pipelining and caches.

The signal delay for a wire increases in proportion to the product of its resistance and
capacitance. As feature size shrinks wires get shorter, but the resistance and capacitance per unit
length gets worse. Since both resistance and capacitance depend on detailed aspects of the

CS2354 Advanced Computer Architecture

SCE 8 Dept of CSE

process, the geometry of a wire, the loading on a wire, and even the adjacency to other
structures. In the past few years, wire delay has become a major design limitation for large
integrated circuits and is often more critical than transistor switching delay. Larger and larger
fractions of the clock cycle have been consumed by the propagation delay of signals on wires. In
2001, the Pentium 4 broke new ground by allocating two stages of its 20+ stage pipeline just for
propagating signals across the chip.

Power also provides challenges as devices are scaled. For modern CMOS
microprocessors, the dominant energy consumption is in switching transistors. The energy
required per transistor is proportional to the product of the load capacitance of the transistor, the
frequency of switching, and the square of the voltage. As we move from one process to the next,
the increase in the number of transistors switching and the frequency with which they switch,
dominates the decrease in load capacitance and voltage, leading to an overall growth in power
consumption.

1.1.2 Cost, Price and their Trends

In the past 15 years, the use of technology improvements to achieve lower cost, as well as
increased performance, has been a major theme in the computer industry.

• Price is what you sell a finished good for,

• Cost is the amount spent to produce it, including overhead.

The Impact of Time, Volume, Commodification, and Packaging

The cost of a manufactured computer component decreases over time even without major
improvements in the basic implementation technology. The underlying principle that drives costs
down is the learning curve manufacturing costs decrease over time. As an example of the
learning curve in action, the price per megabyte of DRAM drops over the long term by 40% per
year.

The Microprocessor prices also drop over time, but because they are less standardized
than DRAMs, the relationship between price and cost is more complex. In a period of significant
competition, price tends to track cost closely

The Volume is a second key factor in determining cost. Increasing volumes affect cost in
several ways.

• First, they decrease the time needed to get down the learning curve, which is partly
proportional to the number of systems (or chips) manufactured.

• Second, volume decreases cost, since it increases purchasing and manufacturing efficiency.

As a rule of thumb, some designers have estimated that cost decreases about 10% for
each doubling of volume.

The Commodities are products that are sold by multiple vendors in large volumes and are
essentially identical. Virtually all the products sold on the shelves of grocery stores are
commodities, as are standard DRAMs, disks, monitors, and keyboards. In the past 10 years,
much of the low end of the computer business has become a commodity business focused on
building IBM-compatible PCs. There are a variety of vendors that ship virtually identical

CS2354 Advanced Computer Architecture

SCE 9 Dept of CSE

products and are highly competitive. Of course, this competition decreases the gap between cost
and selling price, but it also decreases cost.

Cost of an Integrated Circuit:

The cost of packaged integrated circuit is

Cost of die + Cost of testing die + Costof packaging and final testCost of integrated
circuit=Final test yield

The number of good chips per wafer requires first learning how many dies fit on a wafer
and then learning how to predict the percentage of those that will work. From there it is simple to
predict cost:

Cost of waferCost of die=Dies per wafer × Die yield

The number of dies per wafer is basically the area of the wafer divided by the area of the
die. It can be more accurately estimated by

2×(Wafer diameter/2) × Wafer diameterDies per wafer=Die area2xDieAreaππ−

The first term is the ratio of wafer area (πr
2
) to die area. The second compensates for the

“square peg in a round hole” problem rectangular dies near the periphery of round wafers.
Dividing the circumference (πd) by the diagonal of a square die is approximately the number of
dies along the edge. For example, a wafer 30 cm (≈ 12 inch) in diameter produces π× 225 – (π ×
30 ⁄ 1.41) = 640 1-cm dies.

Cost Versus Price—Why They Differ and By How Much

Cost goes through a number of changes before it becomes price, and the computer
designer should understand how a design decision will affect the potential selling price. For
example, changing cost by $1000 may change price by $3000 to $4000.

The relationship between price and volume can increase the impact of changes in cost,
especially at the low end of the market. Typically, fewer computers are sold as the price
increases. Furthermore, as volume decreases, costs rise, leading to further increases in price.

Direct costs refer to the costs directly related to making a product. These include labor
costs, purchasing components, scrap (the leftover from yield), and warranty. Direct cost typically
adds 10% to 30% to component cost.

The next addition is called the gross margin, the company’s overhead that cannot be
billed directly to one product. This can be thought of as indirect cost. It includes the company’s
research and development (R&D), marketing, sales, manufacturing equipment maintenance,
building rental, cost of financing, pretax profits, and taxes. When the component costs are added
to the direct cost and gross margin,

Average selling price is the money that comes directly to the company for each product
sold. The gross margin is typically 10% to 45% of the average selling price, depending on the
uniqueness of the product. Manufacturers of low-end PCs have lower gross margins for several
reasons. First, their R&D expenses are lower. Second, their cost of sales is lower, since they use
indirect distribution by mail, the Internet, phone order, or retail store) rather than salespeople.
Third, because their products are less unique, competition is more intense, thus forcing lower
prices and often lower profits, which in turn lead to a lower gross margin.

CS2354 Advanced Computer Architecture

SCE 10 Dept of CSE

List price and average selling price are not the same. One reason for this is that
companies offer volume discounts, lowering the average selling price. As personal computers
became commodity products, the retail mark-ups have dropped significantly, so list price and
average selling price have closed.

1.2 Measuring and Reporting Performance

The computer user is interested in reducing response time(the time between the start and
the completion of an event) also referred to as execution time. The manager of a large data
processing center may be interested in increasing throughput(the total amount of work done in a
given time).

Even execution time can be defined in different ways depending on what we count. The
most straightforward definition of time is called wall-clock time, response time, or elapsed time,
which is the latency to complete a task, including disk accesses, memory accesses, input/output
activities, operating system overhead

Choosing Programs to Evaluate Performance

A computer user who runs the same programs day in and day out would be the perfect
candidate to evaluate a new computer. To evaluate a new system the user would simply compare
the execution time of her workload—the mixture of programs and operating system commands
that users run on a machine.

There are five levels of programs used in such circumstances, listed below in decreasing
order of accuracy of prediction.

1. Real applications— Although the buyer may not know what fraction of time is spent
on these programs, she knows that some users will run them to solve real problems. Examples
are compilers for C, text-processing software like Word, and other applications like Photoshop.
Real applications have input, output, and options that a user can select when running the
program. There is one major downside to using real applications as benchmarks: Real
applications often encounter portability problems arising from dependences on the operating
system or compiler. Enhancing portability often means modifying the source and sometimes
eliminating some important activity, such as interactive graphics, which tends to be more
system-dependent.

2. Modified (or scripted) applications—In many cases, real applications are used as the
building block for a benchmark either with modifications to the application or with a script that
acts as stimulus to the application. Applications are modified for two primary reasons: to
enhance portability or to focus on one particular aspect of system performance. For example, to
create a CPU-oriented benchmark, I/O may be removed or restructured to minimize its impact on
execution time. Scripts are used to reproduce interactive behavior, which might occur on a
desktop system, or to simulate complex multiuser interaction, which occurs in a server system.

3. Kernels—Several attempts have been made to extract small, key pieces from real
programs and use them to evaluate performance. Livermore Loops and Linpack are the best
known examples. Unlike real programs, no user would run kernel programs, for they exist solely
to evaluate performance. Kernels are best used to isolate performance of individual features of a
machine to explain the reasons for differences in performance of real programs.

CS2354 Advanced Computer Architecture

SCE 11 Dept of CSE

4. Toy benchmarks—Toy benchmarks are typically between 10 and 100 lines of code and
produce a result the user already knows before running the toy program. Programs like Sieve of
Eratosthenes, Puzzle, and Quicksort are popular because they are small, easy to type, and run on
almost any computer. The best use of such programs is beginning programming assignments

5. Synthetic benchmarks—Similar in philosophy to kernels, synthetic benchmarks try to
match the average frequency of operations and operands of a large set of programs. Whetstone
and Dhrystone are the most popular synthetic benchmarks.

Benchmark Suites

Recently, it has become popular to put together collections of benchmarks to try to
measure the performance of processors with a variety of applications. One of the most successful
attempts to create standardized benchmark application suites has been the SPEC (Standard
Performance Evaluation Corporation), which had its roots in the late 1980s efforts to deliver
better benchmarks for workstations. Just as the computer industry has evolved over time, so has
the need for different benchmark suites, and there are now SPEC benchmarks to cover different
application classes, as well as other suites based on the SPEC model. Which is shown in figure

Desktop Benchmarks

Desktop benchmarks divide into two broad classes: CPU intensive benchmarks and
graphics intensive benchmarks intensive CPU activity). SPEC originally created a benchmark set
focusing on CPU performance (initially called SPEC89), which has evolved into its fourth
generation: SPEC CPU2000, which follows SPEC95, and SPEC92.

Although SPEC CPU2000 is aimed at CPU performance, two different types of graphics
benchmarks were created by SPEC: SPEC viewperf is used for benchmarking systems
supporting the OpenGL graphics library, while SPECapc consists of applications that make
extensive use of graphics. SPECviewperf measures the 3D rendering performance of systems
running under OpenGL using a 3-D model and a series of OpenGL calls that transform the
model. SPECapc consists of runs of three large applications:

1. Pro/Engineer: a solid modeling application that does extensive 3-D rendering. The
input script is a model of a photocopying machine consisting of 370,000 triangles.

2. SolidWorks 99: a 3-D CAD/CAM design tool running a series of five tests varying
from I/O intensive to CPU intensive. The largetest input is a model of an assembly line
consisting of 276,000 triangles.

CS2354 Advanced Computer Architecture

SCE 12 Dept of CSE

3. Unigraphics V15: The benchmark is based on an aircraft model and covers a wide
spectrum of Unigraphics functionality, including assembly, drafting, numeric control machining,
solid modeling, and optimization. The inputs are all part of an aircraft design.

Server Benchmarks

Just as servers have multiple functions, so there are multiple types of benchmarks. The
simplest benchmark is perhaps a CPU throughput oriented benchmark. SPEC CPU2000 uses the
SPEC CPU benchmarks to construct a simple throughput benchmark where the processing rate
of a multiprocessor can be measured by running multiple copies (usually as many as there are
CPUs) of each SPEC CPU benchmark and converting the CPU time into a rate. This leads to a
measurement called the SPECRate. Other than SPECRate, most server applications and
benchmarks have significant I/O activity arising from either disk or network traffic, including
benchmarks for file server systems, for web servers, and for database and transaction processing
systems. SPEC offers both a file server benchmark (SPECSFS) and a web server benchmark
(SPECWeb). SPECSFS (see http://www.spec.org/osg/sfs93/) is a benchmark for measuring NFS
(Network File System) performance using a script of file server requests; it tests the performance
of the I/O system (both disk and network I/O) as well as the CPU. SPECSFS is a throughput
oriented benchmark but with important response time requirements.

Transaction processing benchmarks measure the ability of a system to handle
transactions, which consist of database accesses and updates. All the TPC benchmarks measure
performance in transactions per second. In addition, they include a response-time requirement, so
that throughput performance is measured only when the response time limit is met. To model
real-world systems, higher transaction rates are also associated with larger systems, both in terms
of users and the data base that the transactions are applied to. Finally, the system cost for a
benchmark system must also be included, allowing accurate comparisons of cost-performance.

Embedded Benchmarks

Benchmarks for embedded computing systems are in a far more nascent state than those
for either desktop or server environments. In fact, many manufacturers quote Dhrystone
performance, a benchmark that was criticized and given up by desktop systems more than 10
years ago! As mentioned earlier, the enormous variety in embedded applications, as well as
differences in performance requirements (hard real-time, soft real-time, and overall cost-
performance), make the use of a single set of benchmarks unrealistic.

In practice, many designers of embedded systems devise benchmarks that reflect their
application, either as kernels or as stand-alone versions of the entire application. For those
embedded applications that can be characterized well by kernel performance, the best
standardized set of benchmarks appears to be a new benchmark set: the EDN Embedded
Microprocessor Benchmark Consortium (or EEMBC–pronounced embassy). The EEMBC
benchmarks fall into five classes: automotive/industrial, consumer, networking, office
automation, and telecommunications Figure shows the five different application classes, which
include 34 benchmarks.

http://www.spec.org/osg/sfs93/

CS2354 Advanced Computer Architecture

SCE 13 Dept of CSE

1.3. Quantitative Principles of Computer Design

The most important and pervasive principle of computer design is to make the common case fast
In applying this simple principle, we have to decide what the frequent case is and how much
performance can be improved by making that case faster. A fundamental law, called Amdahl’s
Law, can be used to quantify this principle.

Amdahl’s Law
The performance gain that can be obtained by improving some portion of a computer can

be calculated using Amdahl’s Law. Amdahl’s Law states that the performance improvement to
be gained from using some faster mode of execution is limited by the fraction of the time the
faster mode can be used. Amdahl’s Law defines the speedup that can be gained by using a
particular feature.

Speedup is the Ratio

Performance for entire task using enhancement when possible

Speedup=

Performance for entire task without using enhancement

Alternatively,

Execution Time for entire task without using enhancement Speedup=Execution Time for
entire task using enhancement when possible

Speedup tells us how much faster a task will run using the machine with the enhancement
as opposed to the original machine. Amdahl’s Law gives us a quick way to find the speedup
from some enhancement, which depends on two factors:

1. The fraction of the computation time in the original machine that can be converted to
take advantage of the enhancement—For example, if 20 seconds of the execution time of a
program that takes 60 seconds in total can use an enhancement, the fraction is 20/60. This value,
which we will call Fractionenhanced, is always less than or equal to 1.

2. The improvement gained by the enhanced execution mode; that is, how much faster the
task would run if the enhanced mode were used for the entire program— This value is

CS2354 Advanced Computer Architecture

SCE 14 Dept of CSE

the time of the original mode over the time of the enhanced mode: If the enhanced mode takes 2
seconds for some portion of the program that can completely use the mode, while the original
mode took 5 seconds for the same portion, the improvement is 5/2. We will call this value, which
is always greater than 1, Speedupenhanced.

The execution time using the original machine with the enhanced mode will be the time
spent using the unenhanced portion of the machine plus the time spent using the enhancement:

Amdahl’s Law can serve as a guide to how much an enhancement will improve
performance and how to distribute resources to improve cost/performance.

The CPU Performance Equation

Essentially all computers are constructed using a clock running at a constant rate. These
discrete time events are called ticks, clock ticks, clock periods, clocks, cycles, or clock cycles.
Computer designers refer to the time of a clock period by its duration (e.g., 1 ns) or by its rate
(e.g., 1 GHz). CPU time for a program can then be expressed

CPU Time = CPU Clock Cycles Per a Program X Clock Cycle Time

In addition to the number of clock cycles needed to execute a program, we can also count
the number of instructions executed—the instruction path length or instruction count (IC). If we
know the number of clock cycles and the instruction count we can calculate the average number
of clock cycles per instruction (CPI).

CPI is computed as

CPU Clock Cycles Per a Program

CPI=

Instruction Count

This allows us to use CPI in the execution time formula:

CPU time = Instruction count X Clock Cycle Time X Cycles per Instruction

Principle of Locality

Locality of reference means: Programs tend to reuse data and instructions they have used
recently. A widely held rule of thumb is that a program spends 90% of its execution time in only
10% of the code. An implication of locality is that we can predict with reasonable accuracy what
instructions and data a program will use in the near future based on its accesses in the recent
past.

Locality of reference also applies to data accesses, though not as strongly as to code
accesses. Two different types of locality have been observed. Temporal locality states that
recently accessed items are likely to be accessed in the near future. Spatial locality says that
items whose addresses are near one another tend to be referenced close together in time.

Advantage of Parallelism

Advantage of parallelism is one of the most important methods for improving
performance. We give three brief examples, which are expounded on in later chapters. Our first
example is the use of parallelism at the system level. To improve the throughput performance on
a typical server benchmark, such as SPECWeb or TPC, multiple processors and multiple disks

CS2354 Advanced Computer Architecture

SCE 15 Dept of CSE

can be used. The workload of handling requests can then be spread among the CPUs or disks
resulting in improved throughput. This is the reason that scalability is viewed as a valuable asset
for server applications.

At the level of an individual processor, taking advantage of parallelism among
instructions is critical to achieving high performance. This can be done to do this is through
pipelining. The basic idea behind pipelining is to overlap the execution of instructions, so as to
reduce the total time to complete a sequence of instructions. Viewed from the perspective of the
CPU performance equation, we can think of pipelining as reducing the CPI by allowing
instructions that take multiple cycles to overlap.

A key insight that allows pipelining to work is that not every instruction depends on its
immediate predecessor, and thus, executing the instructions completely or partially in parallel
may be possible.

Parallelism can also be exploited at the level of detailed digital design. For example set
associative caches use multiple banks of memory that are typical searched in parallel to find a
desired item. Modern ALUs use carry-lookahead, which uses parallelism to speed the process of
computing sums from linear in the number of bits in the operands to logarithmic.

1.4 Instruction-Level Parallelism: Concepts and Challenges:

Instruction-level parallelism (ILP) is the potential overlap the execution of instructions
using pipeline concept to improve performance of the system. The various techniques that are
used to increase amount of parallelism are reduces the impact of data and control hazards and
increases processor ability to exploit parallelism

There are two approaches to exploiting ILP.
1. Static Technique – Software Dependent
2. Dynamic Technique – Hardware Dependent

The simplest and most common way to increase the amount of parallelism is loop-level
parallelism. Here is a simple example of a loop, which adds two 1000- element arrays, that is
completely parallel:

for (i=1;i<=1000; i=i+1) x[i] = x[i] + y[i];

CPI (Cycles per Instruction) for a pipelined processor is the sum of the base CPI and all
contributions from stalls:

Pipeline CPI = Ideal pipeline CPI + Structural stalls + Data hazard stalls + Control stalls

The ideal pipeline CPI is a measure of the maximum performance attainable by the
implementation. By reducing each of the terms of the right-hand side, we minimize the overall
pipeline CPI and thus increase the IPC (Instructions per Clock).

CS2354 Advanced Computer Architecture

SCE 16 Dept of CSE

1.4.1 Various types of Dependences in ILP.

Data Dependence and Hazards:

To exploit instruction-level parallelism, determine which instructions can be executed in
parallel. If two instructions are parallel, they can execute simultaneously in a pipeline without
causing any stalls. If two instructions are dependent they are not parallel and must be executed in
order.

There are three different types of dependences: data dependences (also called true data
dependences), name dependences, and control dependences.

Data Dependences:

An instruction j is data dependent on instruction i if either of the following holds:

• Instruction i produces a result that may be used by instruction j, or
• Instruction j is data dependent on instruction k, and instruction k is data dependent on

instruction i.

The second condition simply states that one instruction is dependent on another if there
exists a chain of dependences of the first type between the two instructions. This dependence
chain can be as long as the entire program.

Technique Reduces
Forwarding and bypassing Potential data hazard stalls

Delayed branches and simple branch scheduling Control hazard stalls

Basic dynamic scheduling (scoreboarding) Data hazard stalls from true
dependences

Dynamic scheduling with renaming Data hazard stalls and stalls from
anti dependences and output
dependences

Dynamic branch prediction Control stalls

Issuing multiple instructions per cycle Ideal CPI

Speculation Data hazard and control hazard stalls

Dynamic memory disambiguation Data hazard stalls with memory

Loop unrolling Control hazard stalls

Basic compiler pipeline scheduling Data hazard stalls

Compiler dependence analysis Ideal CPI, data hazard stalls

Compiler speculation Ideal CPI, data, control stalls

CS2354 Advanced Computer Architecture

SCE 17 Dept of CSE

For example, consider the following code sequence that increment a vector of values in
memory (starting at 0(R1) and with the last element at 8(R2)) by a scalar in register F2:

Loop: L.D F0,0(R1) ; F0=array element
ADD.D F4,F0,F2 ; add scalar in F2
S.D F4,0(R1) ; store result
DADDUI R1,R1,#-8 ; decrement pointer 8 bytes
BNE R1,R2,LOOP ; branch R1!=zero

The dependence implies that there would be a chain of one or more data hazards between
the two instructions. Executing the instructions simultaneously will cause a processor with
pipeline interlocks to detect a hazard and stall, thereby reducing or eliminating the overlap.
Dependences are a property of programs.

Whether a given dependence results in an actual hazard being detected and whether that
hazard actually causes a stall are properties of the pipeline organization. This difference is
critical to understanding how instruction-level parallelism can be exploited.

The presence of the dependence indicates the potential for a hazard, but the actual hazard
and the length of any stall is a property of the pipeline. The importance of the data dependences
is that a dependence

(1) indicates the possibility of a hazard,

(2) Determines the order in which results must be calculated, and

(3) Sets an upper bound on how much parallelism can possibly be exploited.

Name Dependences

The name dependence occurs when two instructions use the same register or memory
location, called a name, but there is no flow of data between the instructions associated with that
name.

There are two types of name dependences between an instruction i that precede
instruction j in program order:

• An antidependence between instruction i and instruction j occurs when instruction j
writes a register or memory location that instruction i reads. The original ordering must be
preserved to ensure that i reads the correct value.

• An output dependence occurs when instruction i and instruction j write the same
register or memory location. The ordering between the instructions must be preserved to ensure
that the value finally written corresponds to instruction j.

Both anti-dependences and output dependences are name dependences, as opposed to true
data dependences, since there is no value being transmitted between the instructions. Since a
name dependence is not a true dependence, instructions involved in a name dependence can
execute simultaneously or be reordered, if the name (register number or memory location) used
in the instructions is changed so the instructions do not conflict.

This renaming can be more easily done for register operands, where it is called register
renaming. Register renaming can be done either statically by a compiler or dynamically by the

CS2354 Advanced Computer Architecture

SCE 18 Dept of CSE

hardware. Before describing dependences arising from branches, let’s examine the relationship
between dependences and pipeline data hazards.

Control Dependences:

A control dependence determines the ordering of an instruction, i, with respect to a
branch instruction so that the instruction i is executed in correct program order. Every

Instruction, except for those in the first basic block of the program, is control dependent on some
set of branches, and, in general, these control dependences must be preserved to preserve
program order. One of the simplest examples of a control dependence is the dependence of the
statements in the “then” part of an if statement on the branch. For example, in the code segment:

if p1 { S1;

};

if p2 { S2;}

S1 is control dependent on p1, and S2is control dependent on p2 but not on p1. In
general, there are two constraints imposed by control dependences:

1. An instruction that is control dependent on a branch cannot be moved before the
branch so that its execution is no longer controlled by the branch. For example, we cannot take
an instruction from the then-portion of an if-statement and move it before the ifstatement.

2. An instruction that is not control dependent on a branch cannot be moved after the
branch so that its execution is controlled by the branch. For example, we cannot take a statement
before the if-statement and move it into the then-portion.

Control dependence is preserved by two properties in a simple pipeline, First, instructions
execute in program order. This ordering ensures that an instruction that occurs before a branch is
executed before the branch. Second, the detection of control or branch hazards ensures that an
instruction that is control dependent on a branch is not executed until the branch direction is
known.

1.4.2 Data Hazard and various hazards in ILP.

Data Hazards

A hazard is created whenever there is dependence between instructions, and they are
close enough that the overlap caused by pipelining, or other reordering of instructions, would
change the order of access to the operand involved in the dependence.

Because of the dependence, preserve order that the instructions would execute in, if
executed sequentially one at a time as determined by the original source program. The goal of
both our software and hardware techniques is to exploit parallelism by preserving program order
only where it affects the outcome of the program. Detecting and avoiding hazards ensures that
necessary program order is preserved.

Data hazards may be classified as one of three types, depending on the order of read and
write accesses in the instructions.

Consider two instructions i and j, with i occurring before j in program order. The possible
data hazards are RAW (read after write) — j tries to read a source before i write it, so j
incorrectly gets the old value. This hazard is the most common type and corresponds to true data

CS2354 Advanced Computer Architecture

SCE 19 Dept of CSE

dependence. Program order must be preserved to ensure that j receives the value from i. In the
simple common five-stage static pipeline a load instruction followed by an integer ALU
instruction that directly uses the load result will lead to a RAW hazard.

WAW (write after write)

j tries to write an operand before it is written by i. The writes end up being performed in
the wrong order, leaving the value written by i rather than the value written by j in the
destination. This hazard corresponds to output dependence. WAW hazards are present only in
pipelines that write in more than one pipe stage or allow an instruction to proceed even when a
previous instruction is stalled. The classic five-stage integer pipeline writes a register only in the
WB stage and avoids this class of hazards.

WAR (write after read)

j tries to write a destination before it is read by i, so i incorrectly gets the new value. This
hazard arises from antidependence. WAR hazards cannot occur in most static issue pipelines
even deeper pipelines or floating point pipelines because all reads are early (in ID) and all writes
are late (in WB). A WAR hazard occurs either when there are some instructions that write results
early in the instruction pipeline, and other instructions that read a source late in the pipeline or
when instructions are reordered.

1.5. Dynamic Scheduling

Overcoming Data Hazards with Dynamic Scheduling:

The Dynamic Scheduling is used handle some cases when dependences are unknown at a
compile time. In which the hardware rearranges the instruction execution to reduce the stalls
while maintaining data flow and exception behavior.

It also allows code that was compiled with one pipeline in mind to run efficiently on a
different pipeline. Although a dynamically scheduled processor cannot change the data flow, it
tries to avoid stalling when dependences, which could generate hazards, are present.

Dynamic Scheduling:

A major limitation of the simple pipelining techniques is that they all use in-order
instruction issue and execution: Instructions are issued in program order and if an instruction is
stalled in the pipeline, no later instructions can proceed. Thus, if there is a dependence between
two closely spaced instructions in the pipeline, this will lead to a hazard and a stall. If there are
multiple functional units, these units could lie idle. If instruction j depends on a long-running
instruction i, currently in execution in the pipeline, then all instructions after j must be stalled
until i is finished and j can execute.

For example, consider this code:

DIV.D F0,F2,F4

ADD.D F10, F0, F8

SUB.D F12, F8, F14

Out-of-order execution introduces the possibility of WAR and WAW hazards, which do
not exist in the five-stage integer pipeline and its logical extension to an in-order floating-point
pipeline.

CS2354 Advanced Computer Architecture

SCE 20 Dept of CSE

Out-of-order completion also creates major complications in handling exceptions.
Dynamic scheduling with out-of-order completion must preserve exception behavior in the
sense that exactly those exceptions that would arise if the program were executed in strict
program order actually do arise.

Imprecise exceptions can occur because of two possibilities:

1. The pipeline may have already completed instructions that are later in program order
than the instruction causing the exception, and

2. The pipeline may have not yet completed some instructions that are earlier in program
order than the instruction causing the exception.

To allow out-of-order execution, we essentially split the ID pipe stage of our simple five-
stage pipeline into two stages:

1. Issue—Decode instructions, check for structural hazards.

2. Read operands—Wait until no data hazards, then read operands.

In a dynamically scheduled pipeline, all instructions pass through the issue stage in order
(inorder issue); however, they can be stalled or bypass each other in the second stage (read
operands) and thus enter execution out of order.

Score-boarding is a technique for allowing instructions to execute out-of-order when
there are sufficient resources and no data dependences; it is named after the CDC 6600
scoreboard, which developed this capability. We focus on a more sophisticated technique, called
Tomasulo’s algorithm that has several major enhancements over scoreboarding.

1.5.1 Dynamic Scheduling Using Tomasulo’s Approach :
This scheme was invented by RobertTomasulo, and was first used in the IBM 360/91. it

uses register renaming to eliminate output and anti-dependencies, i.e. WAW and WAR hazards.
Output and anti-dependencies are just name dependencies; there is no actual data dependence

Tomasulo's algorithm implements register renaming through the use of what are called
reservation stations. Reservation stations are buffers which fetch and store instruction operands
as soon as they are available.

In addition, pending instructions designate the reservation station that will provide their
input. Finally, when successive writes to a register overlap in execution, only the last one is
actually used to update the register. As instructions are issued, the register specifies for pending
operands are renamed to the names of the reservation station, which provides register renaming.

The basic structure of a Tomasulo-based MIPS processor, including both the floating-
point unit and the load/store unit.

Instructions are sent from the instruction unit into the instruction queue from which they
are issued in FIFO order.

The reservation stations include the operation and the actual operands, as well as
information used for detecting and resolving hazards. Load buffers have three functions: hold the
components of the effective address until it is computed, track outstanding loads that are
waiting on the memory, and hold the results of completed loads that are waiting for the CDB.

CS2354 Advanced Computer Architecture

SCE 21 Dept of CSE

Similarly, store buffers have three functions: hold the components of the effective
until it is computed, hold the destination memory addresses of outstanding stores that are
waiting for the data value to store, and hold the address and value to store until the
memory unit is available.

All results from either the FP units or the load unit are put on the CDB, which goes to
the FP register file as well as to the reservation stations and store buffers. The FP adders
implement addition and subtraction, and the FP multipliers do multiplication and division.

FIGURE 1.1 The basic structure of a MIPS floating point unit using Tomasulo’s algorithm.

There are only three steps in Tomasulo’s Aprroach :

1. Issue—Get the next instruction from the head of the instruction queue. If
there is a matching reservation station that is empty, issue the instruction to
the station with the operand values (renames registers)

CS2354 Advanced Computer Architecture

SCE 22 Dept of CSE

2. Execute (EX) — When all the operands are available, place into the
corresponding reservation stations for execution. If operands are not yet
available, monitor the common data bus (CDB) while waiting for it to be computed.

3. Write result (WB)—When the result is available, write it on the CDB and from
there into the registers and into any reservation stations (including store buffers)
waiting for this result. Stores also write data to memory during this step: When
both the address and data value are available, they are sent to the memory unit and
the store completes.

Each reservation station has six fields:

 Op—The operation to perform on source operands S1 and S2.
 Qj, Qk—The reservation stations that will produce the corresponding source

operand; a value of zero indicates that the source operand is already available in
Vj or Vk, or is unnecessary.

 Vj, Vk—The value of the source operands. Note that only one of the V field or
the Q field is valid for each operand. For loads, the Vk field is used to the offset
from the instruction.

 A–used to hold information for the memory address calculation for a load or store.
 Busy—Indicates that this reservation station and its accompanying functional unit

are occupied.

1.6 Hardware speculation

Hardware-based speculation combines three key ideas: dynamic branch prediction to
choose which instructions to execute, speculation to allow the execution of instructions before
the control dependences are resolved and dynamic scheduling to deal with the scheduling of
different combinations of basic blocks.

Hardware-based speculation follows the predicted flow of data values to choose when to
execute instructions. This method of executing programs is essentially a data-flow execution:
operations execute as soon as their operands are available.

The approach is implemented in a number of processors (PowerPC 603/604/G3/G4,
MIPS R10000/R12000, Intel Pentium II/III/ 4, Alpha 21264, and AMD

K5/K6/Athlon), is to implement speculative execution based on Tomasulo’s algorithm.

The key idea behind implementing speculation is to allow instructions to execute out of
order but to force them to commit in order and to prevent any irrevocable action until an
instruction commits.

In the simple single-issue five-stage pipeline we could ensure that instructions
committed in order, and only after any exceptions for that instruction had been detected, simply
by moving writes to the end of the pipeline.

Here are the four steps involved in instruction execution:

CS2354 Advanced Computer Architecture

SCE 23 Dept of CSE

1. Issue—Get an instruction from the instruction queue. Issue the instruction if there is an empty
reservation station and an empty slot in the ROB, send the operands to the reservation station if
they available in either the registers or the ROB for execution. If either all reservations are full or
the ROB is full, then instruction issue is stalled until both have available entries. This stage is
sometimes called dispatch in a dynamically scheduled processor.

2. Execute—If one or more of the operands is not yet available, monitor the CDB (common data
bus) while waiting for the register to be computed. When both operands are available at a
reservation station, execute the operation.

3. Write result—When the result is available, write it on the CDB and from the CDB into the
ROB, as well as to any reservation stations waiting for this result. If the value to be stored is not
available yet, the CDB must be monitored until that value is broadcast, at which time the Value
field of the ROB entry of the store is updated.

4. Commit—There are three different sequences of actions at commit depending on whether the
committing instruction is: a branch with an incorrect prediction, a store, or any other instruction
(normal commit). The normal commit case occurs when an instruction reaches the head of the
ROB and its result is present in the buffer; at this point, the processor updates the register with
the result and removes the instruction from the ROB.

Committing a store is similar except that memory is updated rather than a result register.
When a branch with incorrect prediction reaches the head of the ROB, it indicates that the
speculation was wrong. The ROB is flushed and execution is restarted at the correct successor of
the branch. If the branch was correctly predicted, the branch is finished. Some machines call this
commit phase completion or graduation.

CS2354 Advanced Computer Architecture

SCE 24 Dept of CSE

FIGURE 1.6 The basic structure of a MIPS FP unit using Tomasulo’s algorithm and extended to
handle speculation.

1.7 Compiler Techniques for Exposing ILP

1.7.1 Basic Pipeline Scheduling and Loop Unrolling

To avoid a pipeline stall, a dependent instruction must be separated from the source
instruction by a distance in clock cycles equal to the pipeline latency of that source
instruction.

A compiler’s ability to perform this scheduling depends both on the amount of ILP
available in the program and on the latencies of the functional units in the pipeline.
Throughout this chapter we will assume the FP unit latencies shown in Figure
1.7

CS2354 Advanced Computer Architecture

SCE 25 Dept of CSE

Instruction producing

result
Instruction using result

Latency in clock

cycles
FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

Load double Store double 0

FIGURE 1.7 Latencies of FP operations used in this chapter.
The first column shows the originating instruction type. The second column is

the type of the consuming instruction. The last column is the number of intervening clock
cycles needed to avoid a stall.

We will rely on an example similar to the one we used in the last chapter, adding a
scalar to a vector:

for (i=1000; i>0; i=i–1)

x[i] = x[i] + s;

This loop is parallel by noticing that the body of each iteration is independent. The
first step is to translate the above segment to MIPS assembly language. In the following code
segment, R1is initially the address of the element in the array with the highest address, and
F2 contains the scalar value, s. Register R2 is precomputed, so that 8(R2) is the last element
to operate on. The straightforward MIPS code, not scheduled for the pipeline, looks like
this:

Loop: L.D F0,0(R1) ;F0=array element

ADD.D F4,F0,F2 ;add scalar in F2
S.D F4,0(R1) ;store result
DADDUI R1,R1,#-8 ;decrement pointer

;8 bytes (per DW)
BNE R1,R2,Loop ;branch R1!=zero

Let’s start by seeing how well this loop will run when it is scheduled on a simple
pipeline for MIPS with the latencies

Clock cycle issued

Loop: L.D F0,0(R1) 1

Stall 2
ADD.D F4,F0,F2 3
stall 4
stall 5
S.D F4,0(R1) 6
DADDUI R1,R1,#-8 7
stall 8

CS2354 Advanced Computer Architecture

SCE 26 Dept of CSE

BNE R1,R2,Loop 9
stall 10

This code requires 10 clock cycles per iteration. We can schedule the loop to obtain only
one stall:

Loop: L.D F0,0(R1)

DADDUI R1,R1,#-8
ADD.D F4,F0,F2
stall
BNE R1,R2,Loop ;delayed branch
S.D F4,8(R1) ;altered & interchanged with DADDUI

Execution time has been reduced from 10 clock cycles to 6.The stall after ADD.D is
for the use by the S.D.

In the above example, we complete one loop iteration and store back one array element
every 6 clock cycles, but the actual work of operating on the array element takes just 3 (the
load, add, and store) of those 6 clock cycles. The remaining 3 clock cycles consist of loop
overhead—the DADDUI and BNE—and a stall. To eliminate these 3 clock cycles we need
to get more operations within the loop relative to the number of overhead instructions.

A simple scheme for increasing the number of instructions relative to the branch
and overhead instructions is loop unrolling. Unrolling simply replicates the loop
body multiple times, adjusting the loop termination code.

Loop unrolling can also be used to improve scheduling. Because it eliminates the
branch, it allows instructions from different iterations to be scheduled together. In this case,
we can eliminate the data use stall by creating additional independent instructions within the
loop body. If we simply replicated the instructions when we unrolled the loop, the resulting
use of the same registers could prevent us from effectively scheduling the loop. Thus, we
will want to use different registers for each iteration, increasing the required register
count.

In real programs we do not usually know the upper bound on the loop. Suppose it is n,
and we would like to unroll the loop to make k copies of the body. Instead of a single
unrolled loop, we generate a pair of consecutive loops. The first executes (n mod k) times and
has a body that is the original loop. The second is the unrolled body surrounded by an outer
loop that iterates (n/k) times. For large values of n, most of the execution time will be spent in
the unrolled loop body.

1.7.2 Summary of the Loop Unrolling and Scheduling Example

To obtain the final unrolled code we had to make the following decisions
and transformations:

Determine that it was legal to move the S.D after the DADDUI and BNE, and find
the amount to adjust the S.D offset.

CS2354 Advanced Computer Architecture

SCE 27 Dept of CSE

Determine that unrolling the loop would be useful by finding that the loop
iterations were independent, except for the loop maintenance code.

Use different registers to avoid unnecessary constraints that would be forced by using
the same registers for different computations.

Eliminate the extra test and branch instructions and adjust the loop termination and
iteration code.

Determine that the loads and stores in the unrolled loop can be interchanged by
observing that the loads and stores from different iterations are independent. This
transformation requires analyzing the memory addresses and finding that they do not refer
to the same address. Unrolling is the growth in code size that results.

1.8. Branch Prediction method

1.8.1 Static Branch Prediction method

Static branch predictors are used in processors where the expectation is that
branch behavior is highly predictable at compile-time; static prediction can also be used to
assist dynamic predictors.

An architectural feature that supports static branch predication, namely delayed
branches. Delayed branches expose a pipeline hazard so that the compiler can reduce the
penalty associated with the hazard. The effectiveness of this technique partly depends on
whether we correctly guess which way a branch will go. Being able to accurately predict a
branch at compile time is also helpful for scheduling data hazards. Loop unrolling is on
branches. Loop unrolling is on simple example of this; another example arises from
conditional selection branches.

Consider the following code segment:

LD R1, 0(R2)
DSUBU R1, R1, R3
BEQZ R1, L
OR R4, R5, R6
DADDU R10, R4, R3

L: DADDU R7, R8, R9

The dependence of the DSUBU and BEQZ on the LD instruction means that a stall
will be needed after the LD. Suppose this branch was almost always taken and that the value of
R7 was not needed on the fall-through path. Then we could increase the speed of the program by
moving the instruction DADD R7,R8,R9 to the position after the LD. If the branch was rarely
taken and that the value of R4 was not needed on the taken path, then we could contemplate
moving the OR instruction after the LD.

To perform these optimizations, we need to predict the branch statically when we
compile the program. There are several different methods to statically predict branch behavior.
The simplest scheme is to predict a branch as taken. This scheme has an average misprediction
rate that is equal to the untaken branch frequency, which for the SPEC programs is 34%.

CS2354 Advanced Computer Architecture

SCE 28 Dept of CSE

Unfortunately, the misprediction rate ranges from not very accurate (59%) to highly accurate
(9%).

A better alternative is to predict on the basis of branch direction, choosing backward-
going branches to be taken and forward-going branches to be not taken. For some
programs and compilation systems, the frequency of forward taken branches may be
significantly less than 50%, and this scheme will do better than just predicting all
branches as taken. In the SPEC programs, however, more than half of the forward-going
branches are taken. Hence, predicting all branches as taken is the better approach.

A still more accurate technique is to predict branches on the basis of profile
information collected from earlier runs. The key observation that makes this worthwhile is
that the behavior of branches is often bimodally distributed; that is, an individual branch
is often highly biased toward taken or untaken.

1.8.2 Reduce Branch Costs with Dynamic Hardware Prediction

1.8.2.1 Basic Branch Prediction and Branch-Prediction Buffers

 The simplest dynamic branch-prediction scheme is a branch-pr ediction buffer or
branch history table.

 A branch-prediction buffer is a small memory indexed by the lower portion of the
address of the branch instruction.

 The memory contains a bit that says whether the branch was recently taken or not. if
the prediction is correct—it may have been put there by another branch that has
the same low-order address bits.

 The prediction is a hint that is assumed to be correct, and fetching begins in the
predicted direction. If the hint turns out to be wrong, the prediction bit is inverted and
stored back.

 The performance of the buffer depends on both how often the prediction is for the
branch of interest and how accurate the prediction is when it matches.

 This simple one-bit prediction scheme has a performance shortcoming: Even if a
branch is almost always taken, we will likely predict incorrectly twice, rather than
once, when it is not taken.

The two bits are used to encode the four states in the system. In a counter
implementation, the counters are incremented when a branch is taken and decremented when
it is not taken; the counters saturate at 00 or 11.

One complication of the two-bit scheme is that it updates the prediction bits more
often than a one-bit predictor, which only updates the prediction bit on a mispredict. Since
we typically read the prediction bits on every cycle, a two-bit predictor will typically need
both a read and a write access port.

CS2354 Advanced Computer Architecture

SCE 29 Dept of CSE

FIGURE 1.2 The states in a two-bit prediction scheme.

The two-bit scheme is actually a specialization of a more general scheme that has an
n-bit saturating counter for each entry in the prediction buffer. With an n-bit counter, the
counter can take on values between 0 and 2 n – 1: when the counter is greater than or equal to
one half of its maximum value (2 n-1), the branch is predicted as taken; otherwise, it is predicted
untaken.

To exploit more ILP, the accuracy of our branch prediction becomes critical, this
problem in two ways: by increasing the size of the buffer and by increasing the accuracy of
the scheme we use for each prediction.

1.8.2.2 Correlating Branch Predictors:

These two-bit predictor schemes use only the recent behavior of a single branch to
predict the future behavior of that branch. It may be possible to improve the prediction
accuracy if we also look at the recent behavior of other branches rather than just the branch we
are trying to predict.

Consider a small code fragment from the SPEC92 benchmark

if (aa==2)
aa=0;
if (bb==2)
bb=0;
if (aa!=bb) {

Here is the MIPS code that we would typically generate for this code fragment
assuming that aa and bb are assigned to registers R1 and R2:

DSUBUI R3, R1, #2

CS2354 Advanced Computer Architecture

SCE 30 Dept of CSE

BNEZ R3, L1; branch b1 (aa! =2)

DADD R1, R0, R0; aa=0

L1: DSUBUI R3, R2, #2

BNEZ R3, L2; branch b2 (bb! =2)

DADD R2, R0, R0; bb=0

L2: DSUBU R3, R1, R2; R3=aa-bb

BEQZ R3, L3; branch b3 (aa==bb)

Let’s label these branches b1, b2, and b3. The key observation is that the behavior of
branch b3 is correlated with the behavior of branches b1 and b2. Clearly, if branches b1 and b2
are both not taken (i.e., the if conditions both evaluate to true and aa and bb are both assigned
0), then b3 will be taken, since aa and bb are clearly equal. A predictor that uses only the
behavior of a single branch to predict the outcome of that branch can never capture this
behavior.

Branch predictors that use the behavior of other branches to make a prediction are
called correlating predictors or two-level predictors.

1.8.2.3 Tournament Predictors: Adaptively Combining Local and Global Predictors

The primary motivation for correlating branch predictors came from the observation that
the standard 2-bit predictor using only local information failed on some important
branches and that by adding global information, the performance could be improved.
Tournament predictors take this insight to the next level, by using multiple predictors,
usually one based on global information and one based on local information, and
combining them with a selector. Tournament predictors can achieve both better accuracy at
medium sizes (8Kb-32Kb) and also make use of very large numbers of prediction bits
effectively.

Tournament predictors are the most popular form of multilevel branch predictors. A
multilevel branch predictor use several levels of branch prediction tables together with an
algorithm for choosing among the multiple predictors; Existing tournament predictors use a 2-bit
saturating counter per branch to choose among two different predictors. The four states of the
counter dictate whether to use predictor 1 or predictor 2. The state transition diagram is shown
in Figure 1.3

CS2354 Advanced Computer Architecture

SCE 31 Dept of CSE

FIGURE 1.3 The state transition diagram for a tournament predictor has four states corresponding
to which predictor to use

1.8.2.4 High Performance Instruction Delivery

Branch Target Buffers

A branch-prediction cache that stores the predicted address for the next instruction after a
branch is called a branch-target buffer or branch-target cache.

For the classic, five-stage pipeline, a branch-prediction buffer is accessed during the ID
cycle, so that at the end of ID we know the branch-target address (since it is computed during
ID), the fall-through address (computed during IF), and the prediction. Thus, by the end of ID we
know enough to fetch the next predicted instruction. For a branch-target buffer, we access the
buffer during the IF stage using the instruction address of the fetched instruction, a possible
branch, to index the buffer. If we get a hit, then we know the predicted instruction address at the
end of the IF cycle, which is one cycle earlier than for a branch-prediction buffer.

Because we are predicting the next instruction address and will send it out before
decoding the instruction, we must know whether the fetched instruction is predicted as a taken
branch. Figure 1.4 shows what the branch-target buffer looks like. If the PC of the fetched
instruction matches a PC in the buffer, then the corresponding predicted PC is used as the next
PC.

If a matching entry is found in the branch-target buffer, fetching begins immediately at
the predicted PC. Note that the entry must be for this instruction, because the predicted PC will
be sent out before it is known whether this instruction is even a branch. If we did not check
whether the entry matched this PC, then the wrong PC would be sent out for instructions that
were not branches, resulting in a slower processor. We only need to store the predicted-taken
branches in the branch-target buffer, since an untaken branch follows the same strategy as a non
branch.

CS2354 Advanced Computer Architecture

SCE 32 Dept of CSE

FIGURE 1.4 A branch-target buffer.

Figure 1.5 shows the steps followed when using a branch-target buffer and where these
steps occur in the pipeline. From this we can see that there will be no branch delay if a branch-
prediction entry is found in the buffer and is correct.

The recent designs have used an integrated instruction fetch unit that integrates several
functions:

1. Integrated branch prediction: the branch predictor becomes part of the instruction fetch
unit and is constantly predicting branches, so to drive the fetch pipeline.

2. Instruction prefetch: to deliver multiple instructions per clock, the instruction fetch unit
will likely need to fetch ahead. The unit autonomously manages the prefetching of
instructions, integrating it with branch prediction.

3. Instruction memory access and buffering:.The instruction fetch unit also provides
buffering, essentially acting as an on-demand unit to provide instructions to the issue
stage as needed and in the quantity needed

CS2354 Advanced Computer Architecture

SCE 33 Dept of CSE

FIGURE 1.5 The steps involved in handling an instruction with a branch-target buffer
Integrated Instruction Fetch Units

Return Address Predictors:

The concept of a small buffer of return addresses operating as a stack is used to predict
the return address. This structure caches the most recent return addresses: pushing a return
address on the stack at a call and popping one off at a return. If the cache is sufficiently
large, it will predict the returns perfectly.

CS2354 Advanced Computer Architecture

SCE 34 Dept of CSE

UNIT II MULTIPLE ISSUE PROCESSORS

VLIW & EPIC - Advanced compiler support - Hardware support for exposing parallelism -
Hardware versus software speculation mechanisms - IA 64 and Itanium processors - Limits on
ILP.

2. 1 VLIW Approach

The compiler may be required to ensure that dependences within the issue packet
cannot be present or, at a minimum, indicate when a dependence may be present.

The first multiple-issue processors that required the instruction stream to be explicitly
organized to avoid dependences. This architectural approach was named VLIW, standing for
Very Long Instruction Word, and denoting that the instructions, since they contained several
instructions, were very wide (64 to 128 bits, or more).

The basic architectural concepts and compiler technology are the same whether
multiple operations are organized into a single instruction, or whether a set of instructions
in an issue packet is preconfigured by a compiler to exclude dependent operations (since the
issue packet can be thought of as a very large instruction). Early VLIWs were quite
rigid in their instruction formats and effectively required recompilation of programs for
different versions of the hardware.

VLIWs use multiple, independent functional units. Rather than attempting to
issue multiple, independent instructions to the units, a VLIW packages the multiple
operations into one very long instruction, or requires that the instructions in the issue packet
satisfy the s ame cons t ra in t s . we will assume that multiple operations are placed in
one instruction, as in the original VLIW approach. Since the burden for choosing the
instructions to be issued simultaneously falls on the compiler, the hardware in a
superscalar to make these issue decisions is unneeded.

Since this advantage of a VLIW increases as the maximum issue rate grows, we focus
on a wider-issue processor. Indeed, for simple two issue processors, the overhead of a
superscalar is probably minimal. Because VLIW approaches make sense for wider
processors, we choose to focus our example on such architecture.

For example, a VLIW processor might have instructions that contain five
operations, including: one integer operation (which could also be a branch), two floating-
point operations, and two memory references. The instruction would have a set of fields for
each functional unit— perhaps 16 to 24 bits per unit, yielding an instruction length of between
112 and 168 bits.

To keep the functional units busy, there must be enough parallelism in a code sequence
to fill the available operation slots. This parallelism is uncovered by unrolling loops and
scheduling the code within the single larger loop body. If the unrolling generates
straighline code, then local scheduling techniques, which operate on a single basic block, can
be used. If finding and exploiting the parallelism requires scheduling code across branches,
a substantially more complex global scheduling algorithm must be used.

Global scheduling algorithms are not only more complex in structure, but they must
deal with significantly more complicated tradeoffs in optimization, since moving code across

CS2354 Advanced Computer Architecture

SCE 35 Dept of CSE

branches is expensive. Trace scheduling is one of these global scheduling techniques
developed specifically for VLIWs.

Suppose we have a VLIW that could issue two memory references, two FP
operations, and one integer operation or branch in every clock cycle. Show an unrolled
version of the loop x[i] = x[i] +s (see page 223 for the MIPS ode) for such a processor.
Unroll as many times as necessary to eliminate any stalls. Ignore the branch-delay slot.

The code is shown in Figure 2.1.The loop has been unrolled to make seven copies of
the body, which eliminates all stalls (i.e., completely empty issue cycles), and runs in 9
cycles. This code yields a running rate of seven results in 9 cycles, or 1.29 cycles per
result, nearly twice as fast as the two-issue superscalar that used unrolled and scheduled
code.

Memory Memory FP FP Integer
reference 1 reference 2 operation 1 operation 2 operation/branch

L.D F0,0(R1) L.D F6,-8(R1)

L.D F10,-16(R1) L.D F14,-24(R1)

L.D F18,-32(R1) L.D F22,-40(R1)
ADD.D

F4,F0,F2

ADD.D

F8,F6,F2

L.D F26,-48(R1)
ADD.D

F12,F10,F2

ADD.D

F16,F14,F2
ADD.D

F20,F18,F2

ADD.D

F24,F22,F2

S.D F4,0(R1) S.D -8(R1),F8
ADD.D

F28,F26,F2
S.D F12,-16(R1) S.D -24(R1),F16

S.D F20,-32(R1) S.D -40(R1),F24
DADDUI

R1,R1,#-56
S.D F28,8(R1) BNE R1,R2,Loop

FIGURE 2.1 VLIW instructions that occupy the inner loop and replace the unrolled
sequence.

For the original VLIW model, there are both technical and logistical problems. The
technical problems are the increase in code size and the limitations of lock-step operation. Two

CS2354 Advanced Computer Architecture

SCE 36 Dept of CSE

different elements combine to increase code size substantially for a VLIW. First, generating
enough operations in a straight-line code fragment requires ambitiously unrolling loops (as
earlier examples) thereby increasing code size. Second, whenever instructions are not full, the
unused functional units translate to wasted bits in the instruction encoding.

we saw that only about 60% of the functional units were used, so almost half of each
instruction was empty. In most VLIWs, an instruction may need to be left completely empty if
no operations can be scheduled.

Early VLIWs operated in lock-step; there was no hazard detection hardware at all. This
structure dictated that a stall in any functional unit pipeline must cause the entire processor to
stall, since all the functional units must be kept synchronized. Although a compiler may be able
to schedule the deterministic functional units to prevent stalls, predicting which data accesses
will encounter a cache stall and scheduling them is very difficult.

Hence, caches needed to be blocking and to cause all the functional units to stall. As the
issue rate and number of memory references becomes large, this synchronization restriction
becomes unacceptable. In more recent processors, the functional units operate more
independently, and the compiler is used to avoid hazards at issue time, while hardware checks
allow for unsynchronized execution once instructions are issued.

Binary code compatibility has also been a major logistical problem for VLIWs. In a strict
VLIW approach, the code sequence makes use of both the instruction set definition and the
detailed pipeline structure, including both functional units and their latencies.

One possible solution to this migration problem and the problem of binary code
compatibility in general, is object-code translation or emulation. This technology is developing
quickly and could play a significant role in future migration schemes. Another approach is to
temper the strictness of the approach so that binary compatibility is still feasible. This later
approach is used in the IA-64 architecture.

The major challenge for all multiple-issue processors is to try to exploit large amounts of
ILP. When the parallelism comes from unrolling simple loops in FP programs, the original loop
probably could have been run efficiently on a vector processor.

2.2 EPIC (Explicitly Parallel Instruction Computing)

EPIC permits microprocessors to execute software instructions in parallel by using the
compiler, rather than complex on-die circuitry, to control parallel instruction execution.This was
intended to allow simple performance scaling without resorting to higher clock frequencies.

It was the basis for Intel and HP development of the Intel Itanium architecture Intel/HP
EPIC/IA-64 Architecure. EPIC is ISA philosophy approach. Very closely related to but not the
same as VLIW.IA-64 an ISA definition. Intel’s new 64-bit ISA. An EPIC type ISA

Itanium

A processor implementation of an ISA. The first implementation of the IA-64 ISA EPIC.
EPIC design style Specifies ILP explicit in the machine code, that is, the parallelism is encoded
directly into the instructions similarly to VLIW. A fully predicated instruction set. An inherent
scalable instruction set. Many register Speculative execution of load instructions. EPIC
instruction word contains three 41-bit instructions and a 5-bit control field.

CS2354 Advanced Computer Architecture

SCE 37 Dept of CSE

EPIC design challenges

Develop architectures applicable to general-purpose computing. Find substantial
parallelism in “difficult to parallellize” scalar programs. Provide compatibility across hardware
generations. Support emerging applications. Compiler must find or create sufficient ILP. •
Combine the best attributes of VLIW & superscalar RISC.Scale architectures for modern single-
chip implementation

IA-64 EPIC Architecture

Instruction set architecture has128 64-bit integer registers + 128 82-bit floating points.
Not separate register files per functional unit as in VLIW. Hardware checks dependencies
(interlocks => binary compatibility over time).Predicated execution (select 1 out of 64 1-bit
flags)

Instruction group is a sequence of consecutive instructions with no register data
dependencies. All the instructions in a group could be executed in parallel, if sufficient hardware
resources existed and if any dependence through memory were preserved

An instruction group can be arbitrarily long, but the compiler must explicitly indicate the
boundary between one instruction group and another by placing a stop between 2 instructions
that belong to different groups.IA-64 EPIC instructions are encoded in bundles, which are 128
bits wide

2.2.1 IA-64 EPIC vs VLIW

Similarities

 Compiler generated wide instructions
 Static detection of dependencies
 ILP encoded in the binary
 Large number of architected registers

Differences

 Instructions in a bundle can have dependencies
 Hardware interlock between dependent instructions
 Accommodates varying number of functional units and latencies
 Allows dynamic scheduling and functional unit binding
 Code size is reduced
 The same code can be executed on different processor implementations (ex: different

number of functional units)
 Compiler detects ILP and indicates when an instruction cannot be executed in

parallel with its
 successors

2.3 Hardware Support for Exposing More Parallelism at Compiler Time

Techniques such as loop unrolling, software pipelining, and trace scheduling can be used
to increase the amount of parallelism available when the behavior of branches is fairly
predictable at compile time. When the behavior of branches is not well known, compiler
techniques alone may not be able to uncover much ILP. In such cases, the control dependences
may severely limit the amount of parallelism that can be exploited. Similarly, potential

CS2354 Advanced Computer Architecture

SCE 38 Dept of CSE

dependences between memory reference instructions could prevent code movement that would
increase available ILP. This section introduces several techniques that can help overcome such
limitations.

The first is an extension of the instruction set to include conditional or predicated
instructions. Such instructions can be used to eliminate branches converting a control
dependence into a data dependence and potentially improving performance.

Hardware speculation with in-order commit preserved exception behavior by detecting
and raising exceptions only at commit time when the instruction was no longer speculative. To
enhance the ability of the compiler to speculatively move code over branches, while still
preserving the exception behavior, we consider several different methods, which either include
explicit checks for exceptions or techniques to ensure that only those exceptions that should arise
are generated.

Finally, the hardware speculation schemes provided support for reordering loads and
stores, by checking for potential address conflicts at runtime. To allow the compiler to reorder
loads and stores when it suspects they do not conflict, but cannot be absolutely certain, a
mechanism for checking for such conflicts can be added to the hardware. This mechanism
permits additional opportunities for memory reference speculation.

2.3.1 Conditional or Predicated Instructions

The concept behind conditional instructions is quite simple: An instruction refers to a
condition, which is evaluated as part of the instruction execution. If the condition is true, the
instruction is executed normally; if the condition is false, the execution continues as if the
instruction was a no-op. The most common example of such an instruction is conditional move,
which moves a value from one register to another if the condition is true. Such an instruction can
be used to completely eliminate a branch in simple code sequences.

Consider the following code:

if (A==0) {S=T;}

Assuming that registers R1, R2, and R3 hold the values of A, S, and T, respectively,

The straightforward code using a branch for this statement is

BNEZ R1, L ADDU R2, R3, R0

L: Using a conditional move that performs the move only if the third operand is equal to
zero, we can implement this statement in one instruction:

CMOVZ R2, R3, R1

The conditional instruction allows us to convert the control dependence present in the
branch-based code sequence to data dependence. For a pipelined processor, this moves the place
where the dependence must be resolved from near the front of the pipeline, where it is resolved
for branches, to the end of the pipeline where the register write occurs.

One obvious use for conditional move is to implement the absolute value function: A =
abs (B), which is implemented as if (B<0) {A = - B;) else {A=B;}. This if statement can be
implemented as a pair of conditional moves, or as one unconditional move (A=B) and one
conditional move (A= - B).

CS2354 Advanced Computer Architecture

SCE 39 Dept of CSE

In the example above or in the compilation of absolute value, conditional moves are used
to change a control dependence into a data dependence. This enables us to eliminate the branch
and possibly improve the pipeline behavior.

Conditional moves are the simplest form of conditional or predicated instructions, and
although useful for short sequences, have limitations. In particular, using conditional move to
eliminate branches that guard the execution of large blocks of code can be in efficient, since
many conditional moves may need to be introduced.

To remedy the in efficiency of using conditional moves, some architectures support full
predication, whereby the execution of all instructions is controlled by a predicate. When the
predicate is false, the instruction becomes a no-op. Full predication allows us to simply convert
large blocks of code that are branch dependent. For example, an if-then-else statement within a
loop can be entirely converted to predicated execution, so that the code in the then-case executes
only if the value of the condition is true, and the code in the else-case executes only if the value
of the condition is false. Predication is particularly valuable with global code scheduling, since it
can eliminate nonloop branches, which significantly complicate instruction scheduling.

Predicated instructions can also be used to speculatively move an instruction that is time-
critical, but may cause an exception if moved before a guarding branch. Although it is possible to
do this with conditional move, it is more costly.

Predicated or conditional instructions are extremely useful for implementing short
alternative control flows, for eliminating some unpredictable branches, and for reducing the
overhead of global code scheduling. Nonetheless, the usefulness of conditional instructions is
limited by several factors:

 Predicated instructions that are annulled (i.e., whose conditions are false) still take
some processor resources. An annulled predicated instruction requires fetch resources
at a minimum, and in most processors functional unit execution time.

 Predicated instructions are most useful when the predicate can be evaluated early. If
the condition evaluation and predicated instructions cannot be separated (because of
data dependences in determining the condition), then a conditional instruction may
result in a stall for a data hazard. With branch prediction and speculation, such stalls
can be avoided, at least when the branches are predicted accurately.

 The use of conditional instructions can be limited when the control flow involves
more than a simple alternative sequence. For example, moving an instruction across
multiple branches requires making it conditional on both branches, which requires
two conditions to be specified or requires additional instructions to compute the
controlling predicate.

 Conditional instructions may have some speed penalty compared with unconditional
instructions. This may show up as a higher cycle count for such instructions or a
slower clock rate overall. If conditional instructions are more expensive, they will
need to be used judiciously

For these reasons, many architectures have included a few simple conditional instructions
(with conditional move being the most frequent), but only a few architectures include conditional
versions for the majority of the instructions. The MIPS, Alpha, Power-PC, SPARC and Intel x86

CS2354 Advanced Computer Architecture

SCE 40 Dept of CSE

(as defined in the Pentium processor) all support conditional move. The IA-64 architecture
supports full predication for all instructions.

2.3.2 Compiler Speculation with Hardware Support

Many programs have branches that can be accurately predicted at compile time either
from the program structure or by using a profile. In such cases, the compiler may want to
speculate either to improve the scheduling or to increase the issue rate. Predicated instructions
provide one method to speculate, but they are really more useful when control dependences can
be completely eliminated by if-conversion. In many cases, we would like to move speculated
instructions not only before branch, but before the condition evaluation, and predication cannot
achieve this.

As pointed out earlier, to speculate ambitiously requires three capabilities:

1. The ability of the compiler to find instructions that, with the possible use of register renaming,
can be speculatively moved and not affect the program data flow,

2. The ability to ignore exceptions in speculated instructions, until we know that such exceptions
should really occur, and

3. The ability to speculatively interchange loads and stores, or stores and stores, which may have
address conflicts.

The first of these is a compiler capability, while the last two require hardware support.

2.3.3 Hardware Support for Preserving Exception Behavior

There are four methods that have been investigated for supporting more ambitious
speculation without introducing erroneous exception behavior:

1 The hardware and operating system cooperatively ignore exceptions for speculative
instructions.

2 Speculative instructions that never raise exceptions are used, and checks are introduced
to determine when an exception should occur.

3 A set of status bits, called poison bits, are attached to the result registers written by
speculated instructions when the instructions cause exceptions. The poison bits cause a
fault when a normal instruction attempts to use the register.

4 A mechanism is provided to indicate that an instruction is speculative and the hardware
buffers the instruction result until it is certain that the instruction is no longer speculative.

To explain these schemes, we need to distinguish between exceptions that indicate a
program error and would normally cause termination, such as a memory protection violation, and
those that are handled and normally resumed, such as a page fault. Exceptions that can be
resumed can be accepted and processed for speculative instructions just as if they were normal
instructions.

If the speculative instruction should not have been executed, handling the unneeded
exception may have some negative performance effects, but it cannot cause incorrect execution.
The cost of these exceptions may be high, however, and some processors use hardware support
to avoid taking such exceptions, just as processors with hardware speculation may take some

CS2354 Advanced Computer Architecture

SCE 41 Dept of CSE

exceptions in speculative mode, while avoiding others until an instruction is known not to be
speculative.

Exceptions that indicate a program error should not occur in correct programs, and the
result of a program that gets such an exception is not well defined, except perhaps when the
program is running in a debugging mode. If such exceptions arise in speculated instructions, we
cannot take the exception until we know that the instruction is no longer speculative.

In the simplest method for preserving exceptions, the hardware and the operating system
simply handle all resumable exceptions when the exception occurs and simply return an
undefined value for any exception that would cause termination.

A second approach to preserving exception behavior when speculating introduces
speculative versions of instructions that do not generate terminating exceptions.

A third approach for preserving exception behavior tracks exceptions as they occur but
postpones any terminating exception until a value is actually used, preserving the occurrence of
the exception, although not in a completely precise fashion.

The fourth and final approach listed above relies on a hardware mechanism that operates
like a reorder buffer. In such an approach, instructions are marked by the compiler as speculative
and include an indicator of how many branches the instruction was speculatively moved across
and what branch action (taken/not taken) the compiler assumed.

All instructions are placed in a reorder buffer when issued and are forced to commit in
order, as in a hardware speculation approach. The reorder buffer tracks when instructions are
ready to commit and delays the “write back” portion of any speculative instruction. Speculative
instructions are not allowed to commit until the branches they have been speculatively moved
over are also ready to commit, or, alternatively, until the corresponding sentinel is reached.

2.3.4 Hardware Support for Memory Reference Speculation

Moving loads across stores is usually done when the compiler is certain the addresses do
not conflict. To allow the compiler to undertake such code motion, when it cannot be absolutely
certain that such a movement is correct, a special instruction to check for address conflicts can be
included in the architecture. The special instruction is left at the original location of the load
instruction (and acts like a guardian) and the load is moved up across one or more stores.

When a speculated load is executed, the hardware saves the address of the accessed
memory location. If a subsequent store changes the location before the check instruction, then
the speculation has failed. If the location has not been touched then the speculation is successful.
Speculation failure can be handled in two ways.

If only the load instruction was speculated, then it suffices to redo the load at the point of
the check instruction Ifadditional instructions that depended on the load were also speculated,
then a fix-up sequence that re-executes all the speculated instructions starting with the load is
needed

CS2354 Advanced Computer Architecture

SCE 42 Dept of CSE

2.4 Hardware versus Software Speculation Mechanisms

Hardware Speculation Software Speculation
Dynamic runtime disambiguation of memory addresses is
done using Tomasulo’s algorithm. This disambiguation
allows us to move loads past stores at runtime.

Dynamic runtime disambiguation of
memory addresses is difficult to do at
compile time for integer programs that
contain pointers

Hardware-based speculation works better when control
flow is unpredictable, and when hardware-based branch
prediction is superior to software-based branch prediction
done at compile time.

Hardware-based branch prediction is
superior than software-based branch
prediction done at compile time.

Hardware-based speculation maintains a completely
precise exception model even for speculated instructions

Software-based approaches have added
special support to allow this as well.

Hardware-based speculation does not require compensation
or bookkeeping code.

Software-based speculation require
compensation or Bookkeeping

The ability to see further in the code is very poor in
Hardware based speculation

Compiler-based approaches may benefit
from the ability to see further in the code
sequence, resulting in better code
scheduling than a purely hardware-driven
approach.

2.5 IA-64 ARCHITECTURE

It is a RISC-style, register-register instruction set architecture.Designed to support
compiler-based exploitation of ILP.

2.5.1 COMPONENTS OF IA-64 REGISTER STATE

 128 64-Bit general purpose registers

 128 82-Bit floating-point register (provides 2 extra bits over std. 80-bit IEEE format)

 64 1-Bit predicate registers

 8 64-Bit branch registers, used for indirect branches

 Various registers used for system control, memory mapping, performance counters,
etc.

2.5.2 REGISTER MECHANISM

 0-31 → Accessible Registers

 32-128 → Used as a register stack

 CFM → Set of registers to be used by a given procedure. (Current FraMe
Point)

 Integer register

 Floating point register

 Predicate register

CS2354 Advanced Computer Architecture

SCE 43 Dept of CSE

2.5.3 REGISTER

A frame is created for a called procedure, by renaming the registers in hardware.

 Frame has local area and output area parts.

 The “alloc” instruction specifies the size of these areas.

To handle the over flow of the register stack, special h/w called the register stack engine
is used.

2.5.4 INSTRUCTION FORMAT

 Supports for both Explicit Parallelism and Implicit Parallelism

 Benefits of VLIW approach-implicit parallelism among operations in an instruction
and fixed formatting of the operation fields.

 It can be achieved by relying on the compiler to detect ILP and schedule instructions
into parallel instruction slots.

2.5.4 FIVE EXECUTION UNIT SLOTS

CS2354 Advanced Computer Architecture

SCE 44 Dept of CSE

2.5.5 BENEFITS OF IA-64

1) Implicit parallelism

 By placing instructions into instruction groups

2) Ease of Instruction decode

 By bundle

3) Predication

4) Speculation

5) Memory Reference

2.5.6 Instruction Group:

 It is a sequence of consecutive instructions with no register data dependences among
them.

 If sufficient hardware resources existed and if any dependences through memory were
preserved, then all the instructions in a group could be executed in parallel.

2.5.7 Bundles

Each bundle consists of a 5-bit template field and three instructions, each 41 bits in
length. Template field specifies what types of execution units each instruction in the bundle
requires.

2.5.8 Predication

 An instruction is predicated by a predicate register, whose identity is placed in the lower
6 bits of each instruction field.

 Predicate registers are the set using compare and test instructions

 It allows multiple comparisons to be done in one instruction.

2.5.9 Speculation:

 It supports for control speculation

 That is deals with deferring exception for speculated instruction, memory reference
speculation and thus supports speculation of load instructions.

2.5.10 Memory reference

 It uses the concept of advanced loads

 Advanced load is a load that has been speculatively moved above store instructions on
which it is potentially dependent

 The instruction ld.a is used for advanced load, which is to speculatively perform a load.

 Execution creates an entry called ALAT (Advanced Load Address Table).

 ALAT stores both the register destination of the load and the address of the accessed
memory location.

CS2354 Advanced Computer Architecture

SCE 45 Dept of CSE

 When a store is executed, an associative lookup against the active ALAT entries is
performed.

2.6 Limitations of ILP

2.6.1 The Hardware Model

An ideal processor is one where all artificial constraints on ILP are removed. The only
limits on ILP in such a processor are those imposed by the actual data flows either through
registers or memory.

The assumptions made for an ideal or perfect processor are as follows:

1. Register renaming—There are an infinite number of virtual registers available and hence all
WAW and WAR hazards are avoided and an unbounded number of instructions can begin
execution simultaneously.

2. Branch prediction—Branch prediction is perfect. All conditional branches are predicted
exactly.

3. Jump prediction—All jumps (including jump register used for return and computed jumps) are
perfectly predicted. When combined with perfect branch prediction, this is equivalent to having a
processor with perfect speculation and an unbounded buffer of instructions available for
execution.

4. Memory-address alias analysis—All memory addresses are known exactly and a load

can be moved before a store provided that the addresses are not identical.

Assumptions 2 and 3 eliminate all control dependences. Likewise, assumptions 1 and 4
eliminate all but the true data dependences. Together, these four assumptions mean that any
instruction in the of the program’s execution can be scheduled on the cycle
immediately following the execution of the predecessor on which it depends.

2.6.2Limitations on the Window Size and Maximum Issue Count

A dynamic processor might be able to more closely match the amount of
parallelism uncovered by our ideal processor.

consider what the perfect processor must do:

1. Look arbitrarily far ahead to find a set of instructions to issue, predicting all branches
perfectly.

2. Rename all register uses to avoid WAR and WAW hazards.

3. Determine whether there are any data dependencies among the instructions in the issue
packet; if so, rename accordingly.

4. Determine if any memory dependences exist among the issuing instructions and handle
them appropriately.

5. Provide enough replicated functional units to allow all the ready instructions to issue.

Obviously, this analysis is quite complicated. For example, to determine whether n
issuing instructions have any register dependences among them, assuming all instructions are
register-register and the total number of registers is unbounded, requires

CS2354 Advanced Computer Architecture

SCE 46 Dept of CSE

2n-2+2n-4+……..+2 = 2∑i=1
n-1 i = [2 (n-1)n]/2 = n2 -n

Comparisons. Thus, to detect dependences among the next 2000 instructions—the default size
we assume in several figures—requires almost four million comparisons! Even issuing only
50 instructions requires 2450 comparisons. This cost obviously limits the number of
instructions that can be considered for issue at once.

2.6.3The Effects of Realistic Branch and Jump Prediction:

Our ideal processor assumes that branches can be perfectly predicted: The outcome of any
branch in the program is known before the first instruction is executed.

The five levels of branch prediction shown in these figures are

1. Perfect—All branches and jumps are perfectly predicted at the start of execution.

2. Tournament-based branch predictor—The prediction scheme uses a correlating two-bit
predictor and a noncorrelating two-bit predictor together with a selector, which chooses
the best predictor for each branch.

3. Standard two-bit predictor with 512 two-bit entries—In addition, we assume a 16-entry
buffer to predict returns.

4. Static—A static predictor uses the profile history of the program and predicts that the
branch is always taken or always not taken based on the profile.

5. None—No branch prediction is used, though jumps are still predicted. Parallelism is
largely limited to within a basic block.

2.6.4 Limitations on ILP for Realizable Processors

The performance of processors an ambitious level of hardware support equal to or better than
what is likely in the next five years. In particular we assume the following fixed attributes:

1. Up to 64 instruction issues per clock with no issue restrictions. As we discuss later, the
practical implications of very wide issue widths on clock rate, logic complexity, and
power may be the most important limitation on exploiting ILP.

2. A tournament predictor with 1K entries and a 16-entry return predictor. This predictor is
fairly comparable to the best predictors in 2000; the predictor is not a primary bottleneck.

3. Perfect disambiguation of memory references done dynamically—this is ambitious but
perhaps attainable for small window sizes (and hence small issue rates and load/store
buffers) or through a memory dependence predictor.

4. Register renaming with 64 additional integer and 64 additional FP registers,exceeding
largest number available on any processor in 2001 (41 and 41 in the Alpha 21264), but
probably easily reachable within two or three years.

CS2354 Advanced Computer Architecture

SCE 47 Dept of CSE

UNIT III

MULTIPROCESSORS AND THREAD LEVEL PARALLELISM

Symmetric and distributed shared memory architectures - Performance issues - Synchronization -
Models of memory consistency - Introduction to Multithreading.

3.1 Symmetric Shared Memory Architectures

The Symmetric Shared Memory Architecture consists of several processors with a single
physical memory shared by all processors through a shared bus which is shown below.

FIGURE 3.1 Symmetric Shared Memory Architecture

` Small-scale shared-memory machines usually support the caching of both shared and
private data. Private data is used by a single processor, while shared data is used by multiple
processors, essentially providing communication among the processors thro ugh reads and
writes of the shared data. When a private item is cached, its location is migrated to the
cache, reducing the average access time as well as the memory bandwidth required. Since no
other processor uses the data, the program behavior is identical to that in a uniprocessor.

CS2354 Advanced Computer Architecture

SCE 48 Dept of CSE

3.1.1 Cache Coherence in Multiprocessors:

Introduction of caches caused a coherence problem for I/O operations, The same
problem exists in the case of multiprocessors, because the view of memory held by two
different processors is through their individual caches.

The problem and shows how two different processors can have two different values
for the same location. This difficulty is generally referred to as the cache-

Coherence problem.

Cache Cache Memory

contents for contents for contents for

Time Event CPU A CPU B location X
0 1

1 CPU A reads X 1 1

2 CPU B reads X 1 1 1

3 CPU A stores 0 into X 0 1 0

FIGURE 3.2 The cache-coherence problem for a single memory location (X), read

and written by two processors (A and B).

We initially assume that neither cache contains the variable and that X has the value
1.We also assume a write-through cache; a write-back cache adds some additional but
similar complications.

After the value of X has been written by A, A’s cache and the memory both contain the
new value, but B’s cache does not, and if B reads the value of X, it will receive 1!

Informally, we could say that a memory system is coherent if any read of a data item
returns the most recently written value of that data item. This simple definition contains two
different aspects of memory system behavior, both of which are critical to writing correct
shared-memory programs.

The first aspect, called coherence, defines what values can be returned by a read. The
second aspect, called consistency, determines when a written value will be returned by a read.
Let’s look at coherence first.

CS2354 Advanced Computer Architecture

SCE 49 Dept of CSE

A memory system is coherent if

 A read by a processor, P, to a location X that follows a write by P to X, with no writes
of X by another processor occurring between the write and the read by P, always
returns the value written by P.

 A read by a processor to location X that follows a write by another processor to X returns
the written value if the read and write are sufficiently separated in time and no other
writes to X occur between the two accesses.

 Writes to the same location are serialized: that is, two writes to the same location by any
two processors are seen in the same order by all processors. For example, if the values 1
and then 2 are written to a location, processors can never read the value of the location
as 2 and then later read it as 1.

Coherence and consistency are complementary: Coherence defines the behavior of reads
and writes to the same memory location, while consistency defines the behavior of reads and
writes with respect to accesses to other memory locations.

3.1.2 Basic Schemes for Enforcing Coherence

Coherent caches provide migration, since a data item can be moved to a local cache
and used there in a transparent fashion. This migration reduces both the latency to access a
shared data item that is allocated remotely and the bandwidth demand on the shared
memory.

Coherent caches also provide replication for shared data that is being simultaneously
read, since the caches make a copy of the data item in the local cache. Replication
reduces both latency of access and contention for a read shared data item.

The protocols to maintain coherence for multiple processors are called cache-
coherence protocols. There are two classes of protocols, which use different techniques to
track the sharing status, in use:

Directory based—The sharing status of a block of physical memory is kept in just one
location, called the directory; we focus on this approach in section 6.5, when we discuss
scalable shared-memory architecture.

Snooping—Every cache that has a copy of the data from a block of physical memory also
has a copy of the sharing status of the block, and no centralized state is kept. The caches are
usually on a shared-memory bus, and all cache controllers monitor or snoop on the bus to
determine whether or not they have a copy of a block that is requested on the bus.

3.1.3 Snooping Protocols

The method which ensures that a processor has exclusive access to a data item before
i t writes that item. This style of protocol is called a write invalidate protocol because it
invalidates other copies on a write. It is by far the most common protocol, both for
snooping and for directory schemes. Exclusive access ensures that no other readable or
writable copies of an item exist when the write occurs: all other cached copies of the item are
invalidated.

CS2354 Advanced Computer Architecture

SCE 50 Dept of CSE

Since the write requires exclusive access, any copy held by the reading processor must
be invalidated (hence the protocol name). Thus, when the read occurs, it misses in the
cache and is forced to fetch a new copy of the data.

For a write, we require that the writing processor have exclusive access, preventing
any other processor from being able to write simultaneously.

If two processors do attempt to write the same data simultaneously, one of them wins
the race, causing the other processor’s copy to be invalidated. For the other processor to
complete its write, it must obtain a new copy of the data, which must now contain the
updated value. Therefore, this protocol enforces write serialization.

Contents of Contents of Contents of

to X

CPU B reads X Cache miss for X 1 1 1

FIGURE 3.3 An example of an invalidation protocol working on a snooping bus for a single

cache block (X) with write-back caches.

The alternative to an invalidate protocol is to update all the cached copies of a data

item when that item is written. This type of protocol is called a write update or writes

broadcast protocol. Figure 6.8 shows an example of a write update protocol in operation. In

the decade since these protocols were developed, invalidate has emerged as the winner for the

vast majority of designs.

Processor Bus activity CPU A’s CPU B’s
memory

location X

activity cache cache

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes a 1 Invalidation for X 1 0

CS2354 Advanced Computer Architecture

SCE 51 Dept of CSE

Contents of
Contents of Contents of

memory

Processor Bus activity CPU A’s CPU B’s location X

activity cache cache

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes a 1 Write broadcast
1 1 1

to X of X

CPU B reads X 1 1 1

FIGURE 3.4 An example of a write update or broadcast protocol working on a snooping

bus for a single cache block (X) with write-back caches.

The performance differences between write update and write invalidate protocols
arise from three characteristics:

 Multiple writes to the same word with no intervening reads require multiple write
broadcasts in an update protocol, but only one initial invalidation in a write invalidate
protocol.

 With multiword cache blocks, each word written in a cache block requires a write
broadcast in an update protocol, although only the first write to any word in the block
needs to generate an invalidate in an invalidation protocol. An invalidation protocol
works on cache blocks, while an update protocol must work on individual words (or
bytes, when bytes are written). It is possible to try to merge writes in a write
broadcast scheme.

 The delay between writing a word in one processor and reading the written value in
another processor is usually less in a write update scheme, since the written

 data are immediately updated in the reader’s cache

3.1.4 Basic Implementation Techniques

The serialization of access enforced by the bus also forces serialization of writes, since
when two processors compete to write to the same location, one must obtain bus access before
the other. The first processor to obtain bus access will cause th e other processor’s copy to be
invalidated, causing writes to be strictly serialized. One implication of this scheme is that a
write to a shared data item cannot complete until it obtains bus access.

For a write-back cache, however, the problem of finding the most recent data value is
harder, since the most recent value of a data item can be in a cache rather than in
memory. Happily, write-back caches can use the same snooping scheme both for caches misses
and for writes: Each processor snoops every address placed on the bus. If a processor

CS2354 Advanced Computer Architecture

SCE 52 Dept of CSE

finds that it has a dirty copy of the requested cache block, it provides that cache block in
response to the read request and causes the memory access to be aborted.

Since write-back caches generate lower requirements for memory bandwidth, they are
greatly preferable in a multiprocessor, despite the slight increase in complexity. Therefore,
we focus on implementation with write-back caches.

The normal cache tags can be used to implement the process of snooping, and the valid
bit for each block makes invalidation easy to implement. Read misses, whether generated by an
invalidation or by some other event, are also straightforward since they simply rely on the
snooping capability. For writes we’d like to know whether any other copies of the block are
cached, because, if there are no other cached copies, then the write need not be placed on the
bus in a write-back cache. Not sending the write reduces both the time taken by the write
and the required bandwidth.

3.2 Distributed Shared-Memory Architectures.

There are several disadvantages in Symmetric Shared Memory architectures.

 First, compiler mechanisms for transparent software cache coherence are very
limited.

 Second, without cache coherence, the multiprocessor loses the advantage of being
able to fetch and use multiple words in a single cache block for close to the cost of
fetching one word.

 Third, mechanisms for tolerating latency such as prefetch are more useful when
they can fetch multiple words, such as a cache block, and where the fetched data
remain coherent; we will examine this advantage in more detail later.

These disadvantages are magnified by the large latency of access to remote memory
versus a local cache. For these reasons, cache coherence is an accepted requirement in small-
scale multiprocessors.

For larger-scale architectures, there are new challenges to extending the cache-
coherent shared-memory model. Although the bus can certainly be replaced with a more
scalable interconnection network and we could certainly distribute the memory so that the
memory bandwidth could also be scaled, the lack of scalability of the snooping coherence
scheme needs to be addressed is known as Distributed Shared Memory architecture.

The first coherence protocol is known as a directory protocol. A directory keeps the
state of every block that may be cached. Information in the directory includes which caches
have copies of the block, whether it is dirty, and so on.

To prevent the directory from becoming the bottleneck, directory entries can be
distributed along with the memory, so that different directory accesses can go to different
locations, just as different memory requests go to different memories. A distributed
directory retains the characteristic that the sharing status of a block is always in a single
known location. This property is what allows the coherence protocol to avoid broadcast.

Figure 3.5 shows how our distributed-memory multiprocessor looks with the directories

Added to each node.

CS2354 Advanced Computer Architecture

SCE 53 Dept of CSE

FIGURE 3.5 A directory is added to each node to implement cache coherence in a distributed-
memory multiprocessor

3.2.1 Directory-Based Cache-Coherence Protocols: The Basics

There are two primary operations that a directory protocol must implement:

 handling a read miss and handling a write to a shared, clean cache block.

(Handling a write miss to a shared block is a simple combination of these two.)

 To implement these operations, a directory must track the state of each cache
block.

In a simple protocol, these states could be the following:

 Shared—One or more processors have the block cached, and the value in memory

is up to date (as well as in all the caches)

 Uncached—No processor has a copy of the cache block

Exclusive—Exactly one processor has a copy of the cache block and it has written the
block, so the memory copy is out of date. The processor is called the owner of the block.

CS2354 Advanced Computer Architecture

SCE 54 Dept of CSE

In addition to tracking the state of each cache block, we must track the processors that
have copies of the block when it is shared, since they will need to be invalidated on a write.

The simplest way to do this is to keep a bit vector for each memory block. When the
block is shared, each bit of the vector indicates whether the corresponding processor has a
copy of that block. We can also use the bit vector to keep track of the owner of the block
when the block is in the exclusive state. For efficiency reasons, we also track the state of each
cache block at the individual caches.

A catalog of the message types that may be sent between the processors and t he
directories. Figure 6.28 shows the type of messages sent among nodes. The local node is the
node where a request originates.

The home node is the node where the memory location and the directory entry of an
address reside. The physical address space is statically distributed, so the node that
contains the memory and directory for a given physical address is known.

For example, the high-order bits may provide the node number, while the low-order
bits provide the offset within the memory on that node. The local node may also be the home
node. The directory must be accessed when the home node is the local node, since copies may
exist in yet a third node, called a remote node.

A remote node is the node that has a copy of a cache block, whether exclusive (in which
case it is the only copy) or shared. A remote node may be the same as either the local node or the
home node. In such cases, the basic protocol does not change, but interprocessor messages may
be replaced with intraprocessor messages.

Message Message

type Source Destination contents Function of this message

Read miss Local cache P, A Processor P has a read miss at
Home

address A; request data and make
directory

P a read sharer.

Write miss Local cache P, A Processor P has a write miss at
Home

address A; — request data and
directory

make P the exclusive owner.

Invalidate Home Remote A Invalidate a shared copy of data

directory cache at address A.

Fetch Home Remote A Fetch the block at address A and

directory cache send it to its home directory;

change the state of A in the

remote cache to shared.

CS2354 Advanced Computer Architecture

SCE 55 Dept of CSE

Fetch/invali Home Remote A Fetch the block at address A and

date directory cache send it to its home directory;

invalidate the block in the cache.

Data value Home Local cache D Return a data value from the

reply directory home memory.

Data write Remote Home A, D Write back a data value for

back cache directory address A.

FIGURE 3.6 The possible messages sent among nodes to maintain coherence are shown with the
source and destination node, the contents (where P =requesting processor number), A=requested

address, and D=data contents), and the function of the message.

3.3 Synchronization and various Hardware Primitives

3.3.1 Synchronization

Synchronization mechanisms are typically built with user-level software routines that
rely on hardware-supplied synchronization instructions. The efficient spin locks can be built
using a simple hardware synchronization instruction and the coherence mechanism.

3.3.2 Basic Hardware Primitives

The key ability we require to implement synchronization in a multiprocessor is a set of
hardware primitives with the ability to atomically read and modify a memory location.
Without such a capability, the cost of building basic synchronization primitives wil l be too
high and will increase as the processor count increases.

There are a number of alternative formulations of the basic hardware primitives, all of
which provide the ability to atomically read and modify a location, together with some way
to tell if the read and write were performed atomically.

These hardware primitives are the basic building blocks that are used to build a wide
variety of user-level synchronization operations, including things such as locks and barriers.

One typical operation for building synchronization operations is the atomic exchange,
which interchanges a value in a register for a value in memory.

Use this to build a basic synchronization operation, assume that we want to build a

Simple lock where the value 0 is used to indicate that the lock is free and a 1 is used to
indicate that the lock is unavailable.

A processor tries to set the lock by doing an exchange of 1, which is in a register, with
the memory address corresponding to the lock. The value returned from the exchange
instruction is 1 if some other processor had already claimed access and 0 otherwise. In the
latter case, the value is also changed to be 1, preventing any competing exchange from also
retrieving a 0.

CS2354 Advanced Computer Architecture

SCE 56 Dept of CSE

There are a number of other atomic primitives that can be used to implement
synchronization. They all have the key property that they read and update a memory value
in such a manner that we can tell whether or not the two operations executed atomically.
One operation, present in many older multiprocessors, is test-and-set, which tests a value and
sets it if the value passes the test. For example, we could define an operation that tested for
0 and set the value to 1, which can be used in a fashion similar to how we used atomic exchange.

Another atomic synchronization primitive is fetch-and-increment: it returns the value of
a memory location and atomically increments it. By using the value 0 to indicate that the
synchronization variable is unclaimed, we can use fetch-and-increment, just as we used
exchange. There are other uses of operations like fetch-and-increment.

3.3.3 Implementing Locks Using Coherence

We can use the coherence mechanisms of a multiprocessor to implement spin locks:
locks that a processor continuously tries to acquire, spinning around a loop until it
succeeds. Spin locks are used when a programmer expects the lock to be held for a very short
amount of time and when she wants the process of locking to be low latency when the lock is
available. Because spin locks tie up the processor, waiting in a loop for the lock to become
free, they are inappropriate in some circumstances.

The simplest implementation, which we would use if there were no cache coherence,
supports cache coherence, we can maintain the lock value coherent an implementation where
the proca tight loop) could be done on a lo would keep the lock variables in memory. A
processor could continually try to acquire the lock using an atomic operation, say exchange, and
test whether the exchange returned the lock as free. To release the lock, the processor simply
stores the value 0 to the lock. Here is the code sequence to lock a spin lock whose address is
in R1 using an atomic exchange:

DADDUI R2,R0,#1

lockit: EXCH R2,0(R1) ; atomic exchange

BNEZ R2,lockit ; already locked?

If our multiprocessor supports cache coherence, we can cache the locks using the
coherence mechanism to maintain the lock value coherently. Caching locks has two advantages.
First, it allows an implementation where the process of “spinning” (trying to test and acquire the
lock in a tight loop) could be done on a local cached copy rather than requiring a global memory
access on each attempt to acquire the lock.

The second advantage comes from the observation that there is often locality in lock
accesses: that is, the processor that used the lock last will use it again in the near future. In such
cases, the lock value may reside in the cache of that processor, greatly reducing the time to
acquire the lock..

CS2354 Advanced Computer Architecture

SCE 57 Dept of CSE

3.3.4 Synchronization Performance Challenges

Barrier Synchronization

One additional common synchronization operation in programs with parallel loops
is a barrier. A barrier forces all processes to wait until all the processes reach the barrier and
then releases all of the processes. A typical implementation of a barrier can be done with two
spin locks: one used to protect a counter that tallies the proces ses arriving at the barrier and
one used to hold the processes until the last process arrives at the barrier.

Synchronization Mechanisms for Larger-Scale Multiprocessors

Software Implementations

The major difficulty with our spin-lock implementation is the delay due to
contention when many processes are spinning on the lock. One solution is to artificially delay
processes when they fail to acquire the lock. The best performance is obtained by increasing
the delay exponentially whenever the attempt to acquire the lock fails.

Figure 3.7 shows how a spin lock with exponential back-off is implemented.
Exponential back- off is a common technique for reducing contention in shared resources,
including access to shared networks and buses. This implementation still attempts to preserve
low latency when contention is small by not delaying the initial spin loop. The result is that if
many processes are waiting, the back-off does not affect the processes on their first attempt to
acquire the lock. We could also delay that process, but the result would be poorer
performance when the lock was in use by only two processes and the first one happened to
find it locked.

ADDUI R3,R0,#1 ; R3 = initial delay

lockit: LL R2,0(R1) ; load linked

BNEZ R2,lockit ; not available-spin

DADDUI R2,R2,#1 ; get locked value

SC R2,0(R1) ; store conditional

BNEZ R2,gotit ; branch if store succeeds

DSLL R3,R3,#1 ; Increase delay by factor of 2

PAUSE R3 ; delays by value in R3

J lockit

gotit: use data protected by lock

FIGURE 3.7 A spin lock with exponential back-off.

Another technique for implementing locks is to use queuing locks. Queuing locks work

by constructing a queue of waiting processors; whenever a processor frees up the lock, it causes
the next processor in the queue to attempt access. This eliminates contention for a lock when it
is freed. We show how queuing locks operate in the next section using a hardware
implementation, but software implementations using arrays can achieve most of the same
benefits Before we look at hardware primitives,

CS2354 Advanced Computer Architecture

SCE 58 Dept of CSE

3.3.5 Hardware Primitives

In this section we look at two hardware synchronization primitives. The first primitive
deals with locks, while the second is useful for barriers and a number of other user-level
operations that require counting or supplying distinct indices. In both cases we can create a
hardware primitive where latency is essentially identical to our earlier version, but with much
less serialization, leading to better scaling when there is contention.

The major problem with our original lock implementation is that it introduces a large
amount of unneeded contention. For example, when the lock is released all processors
generate both a read and a write miss, although at most one processor can successfull y get
the lock in the unlocked state. This sequence happens on each of the 20 lock/unlock
sequences.

We can improve this situation by explicitly handing the lock from one waiting
processor to the next. Rather than simply allowing all processors to compet e every time the
lock is released, we keep a list of the waiting processors and hand the lock to one explicitly,
when its turn comes. This sort of mechanism has been called a queuing lock. Queuing locks
can be implemented either in hardware, or in software using an array to

keep track of the waiting processes.

3.4 Multithreading exploiting TLP.

3.4.1 Multithreading: Exploiting Thread-Level Parallelism within a Processor

Multithreading allows multiple threads to share the functional units of a single processor
in an overlapping fashion. To permit this sharing, the processor must duplicate the
independent state of each thread. For example, a separate copy of the register file, a
separate PC, and a separate page table are required for each thread.

There are two main approaches to multithreading.

 Fine-grained multithreading switches between threads on each instruction,
causing the execution of multiples threads to be interleaved. This interleaving is
often done in a round-robin fashion, skipping any threads that are stalled at that
time.

 Coarse-grained multithreading was invented as an alternative to fine-grained
multithreading. Coarse-grained multithreading switches threads only on costly stalls,
such as level two cache misses. This change relieves the need to have thread-
switching be essentially free and is much less likely to slow the processor down,
since instructions from other threads will only be issued, when a thread encounters a
costly stall.

3.4.2 Simultaneous Multithreading: Converting Thread-Level Parallelism into Instruction-
Level Parallelism:

Simultaneous multithreading (SMT) is a variation on multithreading that uses the
resources of a multiple issue, dynamically-scheduled processor to exploit TLP at the same time it
exploits ILP. The key insight that motivates SMT is that modern multipleissue processors often
have more functional unit parallelism available than a single thread can effectively use.
Furthermore, with register renaming and dynamic scheduling, multiple instructions from

CS2354 Advanced Computer Architecture

SCE 59 Dept of CSE

independent threads can be issued without regard to the dependences among them; the resolution
of the dependences can be handled by the dynamic scheduling capability.

Figure 6.44 conceptually illustrates the differences in a processor’s ability to exploit the
resources of a superscalar for the following processor configurations:

n a superscalar with no multithreading support,

n a superscalar with coarse-grained multithreading,

n a superscalar with fine-grained multithreading, and

n a superscalar with simultaneous multithreading.

CS2354 Advanced Computer Architecture

SCE 60 Dept of CSE

In the superscalar without multithreading support, the use of issue slots is limited by a
lack of ILP.

In the coarse-grained multithreaded superscalar, the long stalls are partially hidden by
switching to another thread that uses the resources of the processor.In the fine-grained case, the
interleaving of threads eliminates fully empty slots. Because only one thread issues instructions
in a given clock cycle.

In the SMT case, thread-level parallelism (TLP) and instruction-level parallelism (ILP)
are exploited simultaneously; with multiple threads using the issue slots in a single clock cycle.

Figure 6.44 greatly simplifies the real operation of these processors it does illustrate the
potential performance advantages of multithreading in general and SMT in particular.

3.4.3 Design Challenges in SMT processors

There are a variety of design challenges for an SMT processor, including:

 Dealing with a larger register file needed to hold multiple contexts,

 Maintaining low overhead on the clock cycle, particularly in critical steps such as

instruction issue, where more candidate instructions need to be considered, and in

instruction completion, where choosing what instructions to commit may be

challenging, and

 Ensuring that the cache conflicts generated by the simultaneous execution of multiple

threads do not cause significant performance degradation.

In viewing these problems, two observations are important. In many cases, the potential
performance overhead due to multithreading is small, and simple choices work well enough.
Second, the efficiency of current super-scalars is low enough that there is room for significant
improvement, even at the cost of some overhead.

CS2354 Advanced Computer Architecture

SCE 61 Dept of CSE

UNIT IV

MEMORY AND I/O

Cache performance - Reducing cache miss penalty and miss rate - Reducing hit time - Main
memory and performance - Memory technology. Types of storage devices - Buses - RAID -
Reliability, availability and dependability - I/O performance measures - Designing an I/O
system.

4.1 Cache Performance

The average memory access time is calculated as follows

Average memory access time = hit time + Miss rate x Miss Penalty.

Where Hit Time is the time to deliver a block in the cache to the processor (includes time
to determine whether the block is in the cache), Miss Rate is the fraction of memory references
not found in cache (misses/references) and Miss Penalty is the additional time required because
of a miss the average memory access time due to cache misses predicts processor performance.

First, there are other reasons for stalls, such as contention due to I/O devices using
memory and due to cache misses

Second, The CPU stalls during misses, and the memory stall time is strongly correlated to
average memory access time.

CPU time = (CPU execution clock cycles + Memory stall clock cycles) × Clock cycle
time

There are 17 cache optimizations into four categories:

1 Reducing the miss penalty: multilevel caches, critical word first, read miss before write
miss, merging write buffers, victim caches;

2 Reducing the miss rate larger block size, larger cache size, higher associativity, pseudo-
associativity, and compiler optimizations;

3 Reducing the miss penalty or miss rate via parallelism: nonblocking caches, hardware
prefetching, and compiler prefetching;

4 Reducing the time to hit in the cache: small and simple caches, avoiding address
translation, and pipelined cache access.

4.1.1 Techniques for Reducing Cache Miss Penalty

There are five optimizations techniques to reduce miss penalty.

i) First Miss Penalty Reduction Technique: Multi-Level Caches

The First Miss Penalty Reduction Technique follows the Adding another level of cache
between the original cache and memory. The first-level cache can be small enough to match
the clock cycle time of the fast CPU and the second-level cache can be large enough to
capture many accesses that would go to main memory, thereby the effective miss penalty.

CS2354 Advanced Computer Architecture

SCE 62 Dept of CSE

The definition of average memory access time for a two-level cache. Using the subscripts
L1 and L2 to refer, respectively, to a first-level and a second-level cache, the formula is

Average memory access time = Hit timeL1 + Miss rateL1 × Miss penaltyL1 and

Miss penaltyL1 = Hit timeL2 + Miss rateL2 × Miss penaltyL2

so Average memory access time = Hit timeL1 + Miss rateL1× (Hit timeL2 + Miss rateL2 × Miss
penaltyL2)

Local miss rate

This rate is simply the number of misses in a cache divided by the total number of
memory accesses to this cache. As you would expect, for the first-level cache it is equal to Miss
rateL1 and for the second-level cache it is Miss rateL2

Global miss rate

The number of misses in the cache divided by the total num-ber of memory accesses
generated by the CPU. Using the terms above, the global miss rate for the first-level cache is still
just Miss rateL1 but for the second-level cache it is Miss rateL1 × Miss rateL2.

This local miss rate is large for second level caches because the first-level cache skims
the cream of the memory accesses. This is why the global miss rate is the more useful measure: it
indicates what fraction of the memory accesses that leave the CPU go all the way to memory.

Here is a place where the misses per instruction metric shines. Instead of confusion about
local or global miss rates, we just expand memory stalls per instruction to add the impact of a
second level cache.

Average memory stalls per instruction = Misses per instructionL1× Hit timeL2 + Misses per
instructionL2 × Miss penaltyL2.

We can consider the parameters of second-level caches. The foremost difference between
the two levels is that the speed of the first-level cache affects the clock rate of the CPU, while the
speed of the second-level cache only affects the miss penalty of the first-level cache.

The initial decision is the size of a second-level cache. Since everything in the first-level
cache is likely to be in the second-level cache, the second-level cache should be much bigger
than the first. If second-level caches are just a little bigger, the local miss rate will be high.

Memory

diskL1 cache
Regs

L2 cache

Processor

CS2354 Advanced Computer Architecture

SCE 63 Dept of CSE

Figures 5.1 and 5.2 show how miss rates and relative execution time change with the size
of a second-level cache for one design.

FIGURE 5.1 FIGURE 5.2

ii) Second Miss Penalty Reduction Technique: Critical Word First and Early Restart

Multilevel caches require extra hardware to reduce miss penalty, but not this second
technique. It is based on the observation that the CPU normally needs just one word of the block
at a time. This strategy is impatience: Don’t wait for the full block to be loaded before sending
the requested word and restarting the CPU.

Here are two specific strategies:

Critical word first

Request the missed word first from memory and send it to the CPU as soon as it arrives;
let the CPU continue execution while filling the rest of the words in the block. Critical-word-first
fetch is also called wrapped fetch and requested word first.

Early restart

Fetch the words in normal order, but as soon as the requested word of the block arrives,
send it to the CPU and let the CPU continue execution.

Generally these techniques only benefit designs with large cache blocks, since the benefit
is low unless blocks are large. The problem is that given spatial locality, there is more than
random chance that the next miss is to the remainder of the block. In such cases, the effective
miss penalty is the time from the miss until the second piece arrives.

iii) Third Miss Penalty Reduction Technique: Giving Priority to Read Misses over Writes

This optimization serves reads before writes have been completed. We start with looking
at complexities of a write buffer. With a write-through cache the most important improvement is
a write buffer of the proper size. Write buffers, however, do complicate memory accesses in that
they might hold the updated value of a location needed on a read miss. The simplest way out of
this is for the read miss to wait until the write buffer is empty.

CS2354 Advanced Computer Architecture

SCE 64 Dept of CSE

The alternative is to check the contents of the write buffer on a read miss, and if there are
no conflicts and the memory system is available, let the read miss continue. Virtually all desktop
and server processors use the latter approach, giving reads priority over writes.

The cost of writes by the processor in a write-back cache can also be reduced. Suppose a
read miss will replace a dirty memory block. Instead of writing the dirty block to memory, and
then reading memory, we could copy the dirty block to a buffer, then read memory, and then
write memory.

This way the CPU read, for which the processor is probably waiting, will finish sooner.
Similar to the situation above, if a read miss occurs, the processor can either stall until the buffer
is empty or check the addresses of the words in the buffer for conflicts.

iv) Fourth Miss Penalty Reduction Technique: Merging Write Buffer

This technique also involves write buffers, this time improving their efficiency. Write
through caches rely on write buffers, as all stores must be sent to the next lower level of the
hierarchy. As mentioned above, even write back caches use a simple buffer when a block is
replaced.

If the write buffer is empty, the data and the full address are written in the buffer, and the
write is finished from the CPU's perspective; the CPU continues working while the write buffer
prepares to write the word to memory.

If the buffer contains other modified blocks, the addresses can be checked to see if the
address of this new data matches the address of the valid write buffer entry. If so, the new data
are combined with that entry, called write merging.

If the buffer is full and there is no address match, the cache (and CPU) must wait until the
buffer has an empty entry. This optimization uses the memory more efficiently since multiword
writes are usually faster than writes performed one word at a time.

FIGURE 5.3

CS2354 Advanced Computer Architecture

SCE 65 Dept of CSE

Figure 5.3

The optimization also reduces stalls due to the write buffer being full. Figure 5.12 shows
a write buffer with and without write merging. Assume we had four entries in the write buffer,
and each entry could hold four 64-bit words. Without this optimization, four stores to sequential
addresses would fill the buffer at one word per entry, even though these four words when merged
exactly fit within a single entry of the write buffer.

Figure 5.3 & 5.4 To illustrate write merging, the write buffer on top does not use it while
the write buffer on the bottom does. The four writes are merged into a single buffer entry with
write merging; without it, the buffer is full even though three-fourths of each entry is wasted.
The buffer has four entries, and each entry holds four 64-bit words.

The address for each entry is on the left, with valid bits (V) indicating whether or not the
next sequential eight bytes are occupied in this entry. (Without write merging, the words to the
right in the upper drawing would only be used for instructions which wrote multiple words at the
same time.)

v) Fifth Miss Penalty Reduction Technique: Victim Caches

One approach to lower miss penalty is to remember what was discarded in case it is
needed again. Since the discarded data has already been fetched, it can be used again at small
cost.

Such “recycling” requires a small, fully associative cache between a cache and its refill
path. Figure 5.13 shows the organization. This victim cache contains only blocks that are
discarded from a cache because of a miss “victims” and are checked on a miss to see if they have
the desired data before going to the next lower-level memory. If it is found there, the victim
block and cache block are swapped. The AMD Athlon has a victim cache with eight entries.

Jouppi [1990] found that victim caches of one to five entries are effective at reducing
misses, especially for small, direct-mapped data caches. Depending on the program, a four-entry
victim cache might remove one quarter of the misses in a 4-KB direct-mapped data cache.

CS2354 Advanced Computer Architecture

SCE 66 Dept of CSE

Summary of Miss Penalty Reduction Techniques

The first technique follows the proverb “the more the merrier”: assuming the principle of
locality will keep applying recursively, just keep adding more levels of increasingly larger
caches until you are happy. The second technique is impatience: it retrieves the word of the
block that caused the miss rather than waiting for the full block to arrive. The next technique is
preference. It gives priority to reads over writes since the processor generally waits for reads but
continues after launching writes.

The fourth technique is companion-ship, combining writes to sequential words into a
single block to create a more efficient transfer to memory. Finally comes a cache equivalent of
recycling, as a victim cache keeps a few discarded blocks available for when the fickle primary
cache wants a word that it recently discarded. All these techniques help with miss penalty, but
multilevel caches is probably the most important.

4.1.2 Techniques to reduce miss rate

The classical approach to improving cache behavior is to reduce miss rates, and there are
five techniques to reduce miss rate. we first start with a model that sorts all misses into three
simple categories:

Compulsory

The very first access to a block cannot be in the cache, so the block must be brought into
the cache. These are also called cold start misses or first reference misses.

Capacity

If the cache cannot contain all the blocks needed during execution of a program, capacity
misses (in addition to compulsory misses) will occur be-cause of blocks being discarded and
later retrieved.

Conflict
If the block placement strategy is set associative or direct mapped, conflict misses (in

addition to compulsory and capacity misses) will occur be-cause a block may be discarded and
later retrieved if too many blocks map to its set. These misses are also called collision misses or

CS2354 Advanced Computer Architecture

SCE 67 Dept of CSE

interference misses. The idea is that hits in a fully associative cache which become misses in an
N-way set associative cache are due to more than N requests on some popular sets.

i) First Miss Rate Reduction Technique: Larger Block Size

The simplest way to reduce miss rate is to increase the block size. Figure 5.4 shows the
trade-off of block size versus miss rate for a set of programs and cache sizes. Larger block sizes
will reduce compulsory misses. This reduction occurs because the principle of locality has two
components: temporal locality and spatial locality. Larger blocks take advantage of spatial
locality.

FIGURE 5.4 Miss rate versus block size for five different-sized caches.

At the same time, larger blocks increase the miss penalty. Since they reduce the number of
blocks in the cache, larger blocks may increase conflict misses and even capacity misses if the
cache is small. Clearly, there is little reason to increase the block size to such a size that it
increases the miss rate. There is also no benefit to reducing miss rate if it increases the average
memory access time. The increase in miss penalty may outweigh the decrease in miss rate.

ii) Second Miss Rate Reduction Technique: Larger caches

The obvious way to reduce capacity misses in the above is to increases capacity of the
cache. The obvious drawback is longer hit time and higher cost. This technique has been
especially popular in off-chip caches: The size of second or third level caches in 2001 equals the
size of main memory in desktop computers.

iii) Third Miss Rate Reduction Technique: Higher Associativity:

Generally the miss rates improves with higher associativity. There are two general rules
of thumb that can be drawn. The first is that eight-way set associative is for practical purposes as
effective in reducing misses for these sized caches as fully associative. You can see the
difference by comparing the 8-way entries to the capacity miss, since capacity misses are
calculated using fully associative cache.

The second observation, called the 2:1 cache rule of thumb and found on the front inside
cover, is that a direct-mapped cache of size N has about the same miss rate as a 2-way set-

CS2354 Advanced Computer Architecture

SCE 68 Dept of CSE

associative cache of size N/2. This held for cache sizes less than 128 KB.

iv) Fourth Miss Rate Reduction Technique: Way Prediction and Pseudo-Associative
Caches

In way-prediction, extra bits are kept in the cache to predict the set of the next cache
access. This prediction means the multiplexer is set early to select the desired set, and only a
single tag comparison is performed that clock cycle. A miss results in checking the other sets for
matches in subsequent clock cycles.

The Alpha 21264 uses way prediction in its instruction cache. (Added to each block of
the instruction cache is a set predictor bit. The bit is used to select which of the two sets to try on
the next cache access. If the predictor is correct, the instruction cache latency is one clock cycle.
If not, it tries the other set, changes the set predictor, and has a latency of three clock cycles.

In addition to improving performance, way prediction can reduce power for embedded
applications. By only supplying power to the half of the tags that are expected to be used, the
MIPS R4300 series lowers power consumption with the same benefits.

A related approach is called pseudo-associative or column associative. Accesses proceed
just as in the direct-mapped cache for a hit. On a miss, however, before going to the next lower
level of the memory hierarchy, a second cache entry is checked to see if it matches there. A
simple way is to invert the most significant bit of the index field to find the other block in the
“pseudo set.”

Pseudo-associative caches then have one fast and one slow hit time—corresponding to a
regular hit and a pseudo hit—in addition to the miss penalty. Figure 5.20 shows the relative
times. One danger would be if many fast hit times of the direct-mapped cache became slow hit
times in the pseudo-associative cache. The performance would then be degraded by this
optimization. Hence, it is important to indicate for each set which block should be the fast hit and
which should be the slow one. One way is simply to make the upper one fast and swap the
contents of the blocks. Another danger is that the miss penalty may become slightly longer,
adding the time to check another cache entry.

v) Fifth Miss Rate Reduction Technique: Compiler Optimizations

This final technique reduces miss rates without any hardware changes. This magical
reduction comes from optimized software. The increasing performance gap between processors
and main memory has inspired compiler writers to scrutinize the memory hierarchy to see if
compile time optimizations can improve performance. Once again research is split between
improvements in instruction misses and improvements in data misses.

CS2354 Advanced Computer Architecture

SCE 69 Dept of CSE

Code can easily be rearranged without affecting correctness; for example, reordering the
procedures of a program might reduce instruction miss rates by reducing conflict misses.
Reordering the instructions reduced misses by 50% for a 2-KB direct-mapped instruction cache
with 4-byte blocks, and by 75% in an 8-KB cache.

Another code optimization aims for better efficiency from long cache blocks. Aligning
basic blocks so that the entry point is at the beginning of a cache block decreases the chance of a
cache miss for sequential code.

Loop Interchange:

Some programs have nested loops that access data in memory in non-sequential order.
Simply exchanging the nesting of the loops can make the code access the data in the order it is
stored. Assuming the arrays do not fit in cache, this technique reduces misses by improving
spatial locality; reordering maximizes use of data in a cache block before it is discarded.

/* Before */
for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */
for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

This optimization improves cache performance without affecting the number of
instructions executed.

Blocking:

This optimization tries to reduce misses via improved temporal locality. We are again
dealing with multiple arrays, with some arrays accessed by rows and some by columns. Storing
the arrays row by row (row major order) or column by column (column major order) does not
solve the problem because both rows and columns are used in every iteration of the loop. Such
orthogonal accesses mean the transformations such as loop interchange are not helpful.

Instead of operating on entire rows or columns of an array, blocked algorithms operate on
submatrices or blocks. The goal is to maximize accesses to the data loaded into the cache before
the data are replaced.

Summary of Reducing Cache Miss Rate

This section first presented the three C’s model of cache misses: compulsory, capacity, and
conflict. This intuitive model led to three obvious optimizations: larger block size to reduce
compulsory misses, larger cache size to reduce capacity misses, and higher associativity to
reduce conflict misses. Since higher associativity may affect cache hit time or cache power
consumption, way prediction checks only a piece of the cache for hits and then on a miss checks
the rest. The final technique is the favorite of the hardware designer, leaving cache optimizations
to the compiler.

CS2354 Advanced Computer Architecture

SCE 70 Dept of CSE

4.2 Virtual memory & techniques for fast address translation

Virtual memory divides physical memory into blocks (called page or segment) and
allocates them to different processes. With virtual memory, the CPU produces virtual addresses
that are translated by a combination of HW and SW to physical addresses, which accesses main
memory. The process is called memory mapping or address translation.Today, the two memory-
hierarchy levels controlled by virtual memory are DRAMs and magnetic disks

Virtual Memory manages the two levels of the memory hierarchy represented by main
memory and secondary storage. Figure 5.31 shows the mapping of virtual memory to physical
memory for a program with four pages.

There are further differences between caches and virtual memory beyond those
quantitative ones mentioned in Figure 5.32

:

CS2354 Advanced Computer Architecture

SCE 71 Dept of CSE

Virtual memory also encompasses several related techniques. Virtual memory systems
can be categorized into two classes: those with fixed-size blocks, called pages, and those with
variable-size locks, called segments. Pages are typically fixed at 4096 to 65,536 bytes, while

segment size varies. The largest segment supported on any processor ranges from 2
16

bytes up to

2
32

bytes; the smallest segment is 1 byte. Figure 5.33 shows how the two approaches might
divide code and data.

The block can be placed anywhere in main memory. Both paging and segmentation rely
on a data structure that is indexed by the page or segment number. This data structure contains
the physical address of the block. For segmentation, the offset is added to the segment’s physical
address to obtain the final physical address. For paging, the offset is simply concatenated to this
physical page address (see Figure 5.35).

This data structure, containing the physical page addresses, usually takes the form of a
page table. Indexed by the virtual page number, the size of the table is the number of pages in the
virtual address space. Given a 32-bit virtual address, 4-KB pages, and 4 bytes per page table

entry, the size of the page table would be (2
32

/2
12

) × 2
2

= 2
22

or 4 MB.

To reduce address translation time, computers use a cache dedicated to these address

CS2354 Advanced Computer Architecture

SCE 72 Dept of CSE

translations, called a translation look-aside buffer, or simply translation buffer. They are
described in more detail shortly.

With the help of Operating System and LRU algorithm pages can be replaced whenever
page fault occurs.

4.2.1 Techniques for Fast Address Translation

Page tables are usually so large that they are stored in main memory, and some-times
paged themselves. Paging means that every memory access logically takes at least twice as long,
with one memory access to obtain the physical address and a second access to get the data. This
cost is far too dear.

One remedy is to remember the last translation, so that the mapping process is skipped if
the current address refers to the same page as the last one. A more general solution is to again
rely on the principle of locality; if the accesses have locality, then the address translations for the
accesses must also have locality. By keeping these address translations in a special cache, a
memory access rarely re-quires a second access to translate the data. This special address
translation cache is referred to as a translation look-aside buffer or TLB, also called a translation
buffer or TB.

A TLB entry is like a cache entry where the tag holds portions of the virtual address and
the data portion holds a physical page frame number, protection field, valid bit, and usually a use
bit and dirty bit. To change the physical page frame number or protection of an entry in the page
table, the operating system must make sure the old entry is not in the TLB; otherwise, the system
won’t be-have properly. Note that this dirty bit means the corresponding page is dirty, not that
the address translation in the TLB is dirty nor that a particular block in the data cache is dirty.
The operating system resets these bits by changing the value in the page table and then
invalidating the corresponding TLB entry. When the entry is reloaded from the page table, the
TLB gets an accurate copy of the bits.

Figure 5.5 shows the Alpha 21264 data TLB organization, with each step of a translation
labeled. The TLB uses fully associative placement; thus, the translation begins (steps 1 and 2) by
sending the virtual address to all tags. Of course, the tag must be marked valid to allow a match.
At the same time, the type of memory access is checked for a violation (also in step 2) against
protection infor-mation in the TLB.

CS2354 Advanced Computer Architecture

SCE 73 Dept of CSE

FIGURE 5.4 Operation of the Alpha 21264 data TLB during address translation.

Selecting a Page Size

The most obvious architectural parameter is the page size. Choosing the page is a question of
balancing forces that favor a larger page size versus those favoring a smaller size. The following
favor a larger size:

 The size of the page table is inversely proportional to the page size; memory (or other
resources used for the memory map) can therefore be saved by making the pages
bigger.

 A larger page size can allow larger caches with fast cache hit times.

 Transferring larger pages to or from secondary storage, possibly over a network, is
more efficient than transferring smaller pages.

 The number of TLB entries are restricted, so a larger page size means that more
memory can be mapped efficiently, thereby reducing the number of TLB misses.

Virtual memory protection

Multiprogramming forces to worry about usage of virtual memory. So Protection is
required for virtual memory concept. The responsibility for maintaining correct process behavior
is shared by designers of the computer and the operating system. The computer designer must
ensure that the CPU portion of the process state can be saved and restored. The operating system
designer must guarantee that processes do not interfere with each others’ computations.

The safest way to protect the state of one process from another would be to copy the
current information to disk. However, a process switch would then take seconds—far too long
for a time-sharing environment. This problem is solved by operating systems partitioning main
memory so that several different processes have their state in memory at the same time.

Protecting Processes

The simplest protection mechanism is a pair of registers that checks every ad-dress to be
sure that it falls between the two limits, traditionally called base and bound. An address is valid
if Base ≤ Address ≤ Bound

CS2354 Advanced Computer Architecture

SCE 74 Dept of CSE

In some systems, the address is considered an unsigned number that is always added to
the base, so the limit test is just (Base + Address) ≤ Bound

If user processes are allowed to change the base and bounds registers, then users can’t be
protected from each other. The operating system, however, must be able to change the registers
so that it can switch processes. Hence, the computer designer has three more responsibilities in
helping the operating system designer protect processes from each other:

 Provide at least two modes, indicating whether the running process is a user process
or an operating system process. This latter process is sometimes called a kernel
process, a supervisor process, or an executive process.

 Provide a portion of the CPU state that a user process can use but not write. This state
includes the base/bound registers, a user/supervisor mode bit(s), and the exception
enable/disable bit. Users are prevented from writing this state because the operating
system cannot control user processes if users can change the address range checks,
give themselves supervisor privileges, or disable exceptions.

 Provide mechanisms whereby the CPU can go from user mode to supervisor mode
and vice versa. The first direction is typically accomplished by a system call,
implemented as a special instruction that transfers control to a dedicated location in
supervisor code space. The PC is saved from the point of the sys-tem call, and the
CPU is placed in supervisor mode. The return to user mode is like a subroutine return
that restores the previous user/supervisor mode.

4.2.2 A Paged Virtual Memory Example: The Alpha Memory Management and the 21264
TLB

The Alpha architecture uses a combination of segmentation and paging, providing
protection while minimizing page table size. With 48-bit virtual addresses, the 64-bit address
space is first divided into three segments: seg0 (bits 63 - 47 = 0...00), kseg (bits 63 - 46 = 0...10),
and seg1 (bits 63 to 46 = 1...11). kseg is re-served for the operating system kernel, has uniform
protection for the whole space, and does not use memory management.

User processes use seg0, which is mapped into pages with individual protection. Figure
5.38 shows the layout of seg0 and seg1. seg 0 grows from address 0 upward, while seg1 grows
downward to 0. This approach provides many advantages: segmentation divides the address
space and conserves page table space, while paging provides virtual memory, relocation, and
protection.

The Alpha uses a three-level hierarchical page table to map the address space to keep the
size reasonable. Figure 5.5 shows address translation in the Alpha. The addresses for each of
these page tables come from three “level” fields, labeled level1, level2, and level3. Address
translation starts with adding the level1 address field to the page table base register and then
reading memory from this location to get the base of the second-level page table.

CS2354 Advanced Computer Architecture

SCE 75 Dept of CSE

The level2 address field is in turn added to this newly fetched address, and memory is
accessed again to determine the base of the third page table. The level3 address field is added to
this base address, and memory is read using this sum to (finally) get the physical address of the
page being referenced. This address is concatenated with the page offset to get the full physical
address. Each page table in the Alpha architecture is constrained to fit within a single page.

The first three levels (0, 1, and 2) use physical addresses that need no further translation,
but Level 3 is mapped virtually. These normally hit the TLB, but if not, the table is accessed a
second time with physical addresses.

FIGURE 5.5 The mapping of an Alpha virtual address.

The Alpha uses a 64-bit page table entry (PTE) in each of these page tables. The first 32
bits contain the physical page frame number, and the other half includes the following five
protection fields:

Valid—Says that the page frame number is valid for hardware translation

User read enable—Allows user programs to read data within this page

Kernel read enable—Allows the kernel to read data within this page

User write enable—Allows user programs to write data within this page

CS2354 Advanced Computer Architecture

SCE 76 Dept of CSE

Kernel write enable—Allows the kernel to write data within this page

In addition, the PTE has fields reserved for systems software to use as it pleases. Since
the Alpha goes through three levels of tables on a TLB miss, there are three potential places to
check protection restrictions. The Alpha obeys only the bottom-level PTE, checking the others
only to be sure the valid bit is set.

4.2.3 A Segmented Virtual Memory Example: Protection in the Intel Pentium

The original 8086 used segments for addressing, yet it provided nothing for virtual
memory or for protection. Segments had base registers but no bound registers and no access
checks, and before a segment register could be loaded the corresponding segment had to be in
physical memory.

Intel’s dedication to virtual memory and protection is evident in the successors to the
8086 (today called IA-32), with a few fields extended to support larger addresses. This protection
scheme is elaborate, with many details carefully designed to try to avoid security loopholes.

The first enhancement is to double the traditional two-level protection model: the
Pentium has four levels of protection. The innermost level (0) corresponds to Alpha kernel mode
and the outermost level (3) corresponds to Alpha user mode. The IA-32 has separate stacks for
each level to avoid security breaches between the levels.

The IA-32 divides the address space, al-lowing both the operating system and the user
access to the full space. The IA-32 user can call an operating system routine in this space and
even pass parameters to it while retaining full protection. This safe call is not a trivial action,
since the stack for the operating system is different from the user’s stack. Moreover, the IA-32
allows the operating system to maintain the protection level of the called routine for the
parameters that are passed to it. This potential loophole in protection is prevented by not
allowing the user process to ask the operating system to access something indirectly that it would
not have been able to access itself. (Such security loopholes are called Trojan horses.)

Adding Bounds Checking and Memory Mapping

The first step in enhancing the Intel processor was getting the segmented addressing to
check bounds as well as supply a base. Rather than a base address, as in the 8086, segment
registers in the IA-32 contain an index to a virtual memory data structure called a descriptor
table. Descriptor tables play the role of page tables in the Alpha. On the IA-32 the equivalent of a
page table entry is a segment descriptor.

It contains fields found in PTEs:

A present bit—equivalent to the PTE valid bit, used to indicate this is a valid translation

A base field—equivalent to a page frame address, containing the physical address of the
first byte of the segment

An access bit—like the reference bit or use bit in some architectures that is helpful for
replacement algorithms

An attributes field—specifies the valid operations and protection levels for operations
that use this segment

There is also a limit field, not found in paged systems, which establishes the upper bound

CS2354 Advanced Computer Architecture

SCE 77 Dept of CSE

of valid offsets for this segment. Figure 5.41 shows examples of IA-32 segment descriptors.

FIGURE 5.41 The IA-32 segment descriptors are distinguished by bits in the attributes field. Base,
limit, present, readable, and writable are all self-explanatory.

IA-32 provides an optional paging system in addition to this segmented addressing. The
upper portion of the 32-bit address selects the segment descriptor and the middle portion is an
index into the page table selected by the descriptor.

Adding Sharing and Protection

To provide for protected sharing, half of the address space is shared by all processes and
half is unique to each process, called global address space and local address space, respectively.
Each half is given a descriptor table with the appropriate name. A descriptor pointing to a shared
segment is placed in the global descriptor table, while a descriptor for a private segment is placed
in the local descriptor table.

4.3 Storage Systems

Types of Storage Devices

There are various types of Storage devices such as magnetic disks, magnetic tapes,
automated tape libraries, CDs, and DVDs.

The First Storage device magnetic disks have dominated nonvolatile storage since 1965.
Magnetic disks play two roles in computer systems:

 Long Term, nonvolatile storage for files, even when no programs are running

 A level of the memory hierarchy below main memory used as a backing store for
virtual memory during program execution.

CS2354 Advanced Computer Architecture

SCE 78 Dept of CSE

A magnetic disk consists of a collection of platters (generally 1 to 12), rotating on a
spindle at 3,600 to 15,000 revolutions per minute (RPM). These platters are metal or glass disks
covered with magnetic recording material on both sides, so 10 platters have 20 recording
surfaces.

The disk surface is divided into concentric circles, designated tracks. There are typically
5,000 to 30,000 tracks on each surface. Each track in turn is divided into sectors that contain the
information; a track might have 100 to 500 sectors. A sector is the smallest unit that can be read
or written. IBM mainframes allow users to select the size of the sectors, although most systems
fix their size, typically at 512 bytes of data. The sequence recorded on the magnetic media is a
sector number, a gap, the information for that sector including error correction code, a gap, the
sector number of the next sector, and so on.

To read and write information into a sector, a movable arm containing a read/ write head
is located over each surface. To read or write a sector, the disk controller sends a command to
move the arm over the proper track. This operation is called a seek, and the time to move the arm
to the desired track is called seek time.

Average seek time is the subject of considerable misunderstanding. Disk manufacturers
report minimum seek time, maximum seek time, and average seek time in their manuals. The
first two are easy to measure, but the average was open to wide interpretation.

The time for the requested sector to rotate under the head is the rotation latency or
rotational delay. The average latency to the desired information is obviously halfway around the
disk; if a disk rotates at 10,000 revolutions per minute (RPM), the average rotation time is
therefore

Average Rotation Time = 0.5/10,000RPM = 0.5/(10,000/60)RPM = 3.0ms

CS2354 Advanced Computer Architecture

SCE 79 Dept of CSE

The next component of disk access, transfer time, is the time it takes to transfer a block of
bits, typically a sector, under the read-write head. This time is a function of the block size, disk
size, rotation speed, recording density of the track, and speed of the electronics connecting the
disk to computer. Transfer rates in 2001 range from 3 MB per second for the 3600 RPM, 1-inch
drives to 65 MB per second for the 15000 RPM, 3.5-inch drives.

The Future of Magnetic Disks

The disk industry has concentrated on improving the capacity of disks. Improvement in
capacity is customarily expressed as improvement in areal density, measured in bits per square
inch:

Areal Density = (Tracks/Inch) on a disk surface X (Bits/Inch) on a track

Through about 1988 the rate of improvement of areal density was 29% per year, thus
doubling density every three years. Between then and about 1996, the rate improved to 60% per
year, quadrupling density every three years and matching the traditional rate of DRAMs. From
1997 to 2001 the rate increased to 100%, or doubling every year. In 2001, the highest density in
commercial products is 20 billion bits per square inch, and the lab record is 60 billion bits per
square inch.

Optical Disks:

One challenger to magnetic disks is optical compact disks, or CDs, and its successor,
called Digital Video Discs and then Digital Versatile Discs or just DVDs. Both the CD-ROM
and DVD-ROM are removable and inexpensive to manufacture, but they are read-only mediums.
These 4.7-inch diameter disks hold 0.65 and 4.7 GB, respectively, although some DVDs write on
both sides to double their capacity. Their high capacity and low cost have led to CD-ROMs and
DVD-ROMs replacing floppy disks as the favorite medium for distributing software and other
types of computer data.

The popularity of CDs and music that can be downloaded from the WWW led to a
market for rewritable CDs, conveniently called CD-RW, and write once CDs, called CD-R. In
2001, there is a small cost premium for drives that can record on CD-RW. The media itself costs
about $0.20 per CD-R disk or $0.60 per CD-RW disk. CD-RWs and CD-Rs read at about half
the speed of CD-ROMs and CD-RWs and CD-Rs write at about a quarter the speed of CD-
ROMs.

Magnetic Tape:

Magnetic tapes have been part of computer systems as long as disks because they use the
similar technology as disks, and hence historically have followed the same density
improvements. The inherent cost/performance difference between disks and tapes is based on
their geometries:

 Fixed rotating platters offer random access in milliseconds, but disks have a limited
storage area and the storage medium is sealed within each reader.

 Long strips wound on removable spools of “unlimited” length mean many tapes can be
used per reader, but tapes require sequential access that can take seconds.

One of the limits of tapes had been the speed at which the tapes can spin without breaking or
jamming. A technology called helical scan tapes solves this problem by keeping the tape speed

CS2354 Advanced Computer Architecture

SCE 80 Dept of CSE

the same but recording the information on a diagonal to the tape with a tape reader that spins
much faster than the tape is moving. This technology increases recording density by about a
factor of 20 to 50. Helical scan tapes were developed for low-cost VCRs and camcorders, which
brought down the cost of the tapes and readers.

Automated Tape Libraries

Tape capacities are enhanced by inexpensive robots to automatically load and store tapes,
offering a new level of storage hierarchy. These nearline tapes mean access to terabytes of
information in tens of seconds, without the intervention of a human operator.

Flash Memory

Embedded devices also need nonvolatile storage, but premiums placed on space and
power normally lead to the use of Flash memory instead of magnetic recording. Flash memory is
also used as a rewritable ROM in embedded systems, typically to allow software to be upgraded
without having to replace chips. Applications are typically prohibited from writing to Flash
memory in such circumstances.

Like electrically erasable and programmable read-only memories (EEPROM), Flash
memory is written by inducing the tunneling of charge from transistor gain to a floating gate.
The floating gate acts as a potential well which stores the charge, and the charge cannot move
from there without applying an external force. The primary difference between EEPROM and
Flash memory is that Flash restricts write to multi-kilobyte blocks, increasing memory capacity
per chip by reducing area dedicated to control. Compared to disks, Flash memories offer low
power consumption (less than 50 milliwatts), can be sold in small sizes, and offer read access
times comparable to DRAMs. In 2001, a 16 Mbit Flash memory has a 65 ns access time, and a
128 Mbit Flash memory has a 150 ns access time.

4.4 Buses : Connecting I/O Devices to CPU/Memory

Buses were traditionally classified as CPU-memory buses or I/O buses. I/O buses may be
lengthy, may have many types of devices connected to them, have a wide range in the data
bandwidth of the devices connected to them, and normally follow a bus standard. CPU-memory
buses, on the other hand, are short, generally high speed, and matched to the memory system to
maximize memory-CPU bandwidth. During the design phase, the designer of a CPU-memory
bus knows all the types of devices that must connect together, while the I/O bus designer must
accept devices varying in latency and bandwidth capabilities. To lower costs, some computers
have a single bus for both memory and I/O devices. In the quest for higher I/O performance,
some buses are a hybrid of the two. For example, PCI is relatively short, and is used to connect
to more traditional I/O buses via bridges that speak both PCI on one end and the I/O bus protocol
on the other. To indicate its intermediate state, such buses are sometimes called mezzanine

Bus Design Decisions

The design of a bus presents several options, as Figure 7.8 shows. Like the rest of the
computer system, decisions depend on cost and performance goals. The first three options in the
figure are clear—separate address and data lines, wider data lines, and multiple-word transfers
all give higher performance at more cost.

CS2354 Advanced Computer Architecture

SCE 81 Dept of CSE

Option High performance Low cost

Bus width Separate address and data lines Multiplex address and data lines

Data width Wider is faster (e.g., 64 bits) Narrower is cheaper (e.g., 8 bits)

Transfer size
Multiple words have less bus
overhead

Single-word transfer is simpler

Bus masters Multiple (requires arbitration) Single master (no arbitration)

Split transaction?
Yes—separate request and reply
packets get higher bandwidth (need
multiple masters)

No—continuous connection is
cheaper and has lower latency

Clocking Synchronous Asynchronous

The next item in the table concerns the number of bus masters. These devices can initiate
a read or write transaction; the CPU, for instance, is always a bus master. A bus has multiple
masters when there are multiple CPUs or when I/O devices can initiate a bus transaction. With
multiple masters, a bus can offer higher bandwidth by using packets, as opposed to holding the
bus for the full transaction. This technique is called split transactions.

The final item in Figure 7.8, clocking, concerns whether a bus is synchronous or
asynchronous. If a bus is synchronous, it includes a clock in the control lines and a fixed protocol
for sending address and data relative to the clock. Since little or no logic is needed to decide
what to do next, these buses can be both fast and inexpensive.

Bus Standards

Standards that let the computer designer and I/O-device designer work independently play a
large role in buses. As long as both designers meet the requirements, any I/O device can connect
to any computer. The I/O bus standard is the document that defines how to connect devices to
computers.

 The Good
 Let the computer and I/O-device designers work independently
 Provides a path for second party (e.g. cheaper) competition

 The Bad
 Become major performance anchors
 Inhibit change
 How to create a standard

 Bottom-up
 Company tries to get standards committee to approve it’s latest philosophy in

hopes that they’ll get the jump on the others (e.g. S bus, PC-AT bus, ...)
 De facto standards

 Top-down
 Design by committee (PCI, SCSI, ...)

CS2354 Advanced Computer Architecture

SCE 82 Dept of CSE

Some sample bus designs are shown below

Interfacing Storage Devices to the CPU

The I/O bus is connected to the main memory bus is shown in figure 7.15

CS2354 Advanced Computer Architecture

SCE 83 Dept of CSE

Processor interface with i/o bus can be done with two techniques one using interrupts and
second using memory mapped I/O

 I/O Control Structures
 Polling
 Interrupts
 DMA
 I/O Controllers
 I/O Processors

The simple interface, in which the CPU periodically checks status bits to see if it is time
for the next I/O operation, is called polling.

Interrupt-driven I/O, used by most systems for at least some devices, allows the CPU to
work on some other process while waiting for the I/O device. For example, the LP11 has a mode
that allows it to interrupt the CPU whenever the done bit or error bit is set. In general-purpose
applications, interrupt-driven I/O is the key to multitasking operating systems and good response
times.

The drawback to interrupts is the operating system overhead on each event. In real-time
applications with hundreds of I/O events per second, this overhead can be intolerable. One
hybrid solution for real-time systems is to use a clock to periodically interrupt the CPU, at which
time the CPU polls all I/O devices

The DMA hardware is a specialized processor that transfers data between memory and an
I/O device while the CPU goes on with other tasks. Thus, it is external to the CPU and must act
as a master on the bus. The CPU first sets up the DMA registers, which contain a memory
address and number of bytes to be transferred. More sophisticated DMA devices support
scatter/gather, whereby a DMA device can write or read data from a list of separate addresses.
Once the DMA transfer is complete, the DMA controller interrupts the CPU. There may be
multiple DMA devices in a computer system.

4.5 RAID : Redundant Arrays of Inexpensive Disks

An innovation that improves both dependability and performance of storage systems is
disk arrays. One argument for arrays is that potential throughput can be increased by having
many disk drives and, hence, many disk arms, rather than one large drive with one disk arm.
Although a disk array would have more faults than a smaller number of larger disks when each
disk has the same reliability, dependability can be improved by adding redundant disks to the
array to tolerate faults. That is, if a single disk fails, the lost information can be reconstructed
from redundant information.

The only danger is in having another disk fail between the time the first disk fails and the
time it is replaced (termed mean time to repair, or MTTR). Since the mean time to failure
(MTTF) of disks is tens of years, and the MTTR is measured in hours, redundancy can make the
measured reliability of 100 disks much higher than that of a single disk. These systems have
become known by the acronym RAID, stand-ing originally for redundant array of inexpensive
disks, although some have re-named it to redundant array of independent disks

The several approaches to redundancy have different overhead and performance. Figure
7.17 shows the standard RAID levels. It shows how eight disks of user data must be

CS2354 Advanced Computer Architecture

SCE 84 Dept of CSE

supplemented by redundant or check disks at each RAID level. It also shows the minimum
number of disk failures that a system would survive.

RAID level Minimum
number
of Disk
faults
survived

Example
Data
disks

Corresponding
Check disks

Corporations producing
RAID products at this
level

0 Non-redundant
striped

0 8 0 Widely used

1 Mirrored 1 8 8
EMC, Compaq
(Tandem), IBM

2 Memory-style
ECC

1 8 4

3 Bit-interleaved
parity

1 8 1 Storage Concepts

4 Block-interleaved
parity

1 8 1 Network Appliance

5 Block-interleaved
distributed parity

1 8 1 Widely used

6 P+Q redundancy 2 8 2

FIGURE 7.17 RAID levels, their fault tolerance, and their overhead in redundant disks.

No Redundancy (RAID 0)

This notation is refers to a disk array in which data is striped but there is no redundancy
to tolerate disk failure. Striping across a set of disks makes the collection appear to software as a
single large disk, which simplifies storage management. It also improves performance for large
accesses, since many disks can operate at once. Video editing systems, for example, often stripe
their data.

RAID 0 something of a misnomer as there is no redundancy, it is not in the original
RAID taxonomy, and striping predates RAID. However, RAID levels are often left to the
operator to set when creating a storage system, and RAID 0 is often listed as one of the options.
Hence, the term RAID 0 has become widely used.

Mirroring (RAID 1)

This traditional scheme for tolerating disk failure, called mirroring or shadowing, uses
twice as many disks as does RAID 0. Whenever data is written to one disk, that data is also
written to a redundant disk, so that there are always two copies of the information. If a disk fails,
the system just goes to the “mirror” to get the desired information. Mirroring is the most
expensive RAID solution, since it requires the most disks.

The RAID terminology has evolved to call the former RAID 1+0 or RAID 10 (“striped

CS2354 Advanced Computer Architecture

SCE 85 Dept of CSE

mirrors”) and the latter RAID 0+1 or RAID 01 (“mirrored stripes”).

Bit-Interleaved Parity (RAID 3)

The cost of higher availability can be reduced to 1/N, where N is the number of disks in a
protection group. Rather than have a complete copy of the original data for each disk, we need
only add enough redundant information to restore the lost information on a failure. Reads or
writes go to all disks in the group, with one extra disk to hold the check information in case there
is a failure. RAID 3 is popular in applications with large data sets, such as multimedia and some
scientific codes.

Parity is one such scheme. Readers unfamiliar with parity can think of the redundant disk
as having the sum of all the data in the other disks. When a disk fails, then you subtract all the
data in the good disks from the parity disk; the remaining information must be the missing
information. Parity is simply the sum modulo two. The assumption behind this technique is that
failures are so rare that taking longer to recover from failure but reducing redundant storage is a
good trade-off.

Block-Interleaved Parity and Distributed Block-Interleaved Parity (RAID 4 and RAID 5)

In RAID 3, every access went to all disks. Some applications would prefer to do smaller
accesses, allowing independent accesses to occur in parallel. That is the purpose of the next
RAID levels. Since error-detection information in each sector is checked on reads to see if data is
correct, such “small reads” to each disk can occur independently as long as the minimum access
is one sector.

Writes are another matter. It would seem that each small write would demand that all
other disks be accessed to read the rest of the information needed to recalculate the new parity, as
in Figure 7.18. A “small write” would require reading the old data and old parity, adding the new
information, and then writing the new parity to the parity disk and the new data to the data disk.

RAID 4 efficiently supports a mixture of large reads, large writes, small reads, and small
writes. One drawback to the system is that the parity disk must be updated on every write, so it is
the bottleneck for back-to-back writes. To fix the parity-write bottleneck, the parity information
can be spread throughout all the disks so that there is no single bottleneck for writes. The
distributed parity organization is RAID 5.

CS2354 Advanced Computer Architecture

SCE 86 Dept of CSE

Figure 4.19

Figure 7.19 shows how data are distributed in RAID 4 vs. RAID 5. As the organization
on the right shows, in RAID 5 the parity associated with each row of data blocks is no longer
restricted to a single disk. This organization allows multiple writes to occur simultaneously as
long as the stripe units are not located in the same disks. For example, a write to block 8 on the
right must also access its parity block P2, thereby occupying the first and third disks. A second
write to block 5 on the right, implying an update to its parity block P1, accesses the second and
fourth disks and thus could occur at the same time as the write to block 8. Those same writes to
the organization on the left would result in changes to blocks P1 and P2, both on the fifth disk,
which would be a bottleneck.

D0 D1 D2 D3 PD0'

+

+

D0' D1 D2 D3 P'

new

data

old

data

old

parity

XOR

XOR

(1. Read) (2. Read)

(3. Write) (4. Write)

CS2354 Advanced Computer Architecture

SCE 87 Dept of CSE

P+Q redundancy (RAID 6)

Parity based schemes protect against a single, self-identifying failures. When a single
failure is not sufficient, parity can be generalized to have a second calculation over the data and
another check disk of information. Yet another parity block is added to allow recovery from a
second failure. Thus, the storage overhead is twice that of RAID 5. The small write shortcut of
Figure 7.18 works as well, ex-cept now there are six disk accesses instead of four to update both
P and Q information.

Errors and Failures in Real Systems

Publications of real error rates are rare for two reasons. First academics rarely have access
to significant hardware resources to measure. Second industrial, researchers are rarely allowed to
publish failure information for fear that it would be used against their companies in the
marketplace. Below are four exceptions.

Berkeley’s Tertiary Disk
The Tertiary Disk project at the University of California created an art-image server for

the Fine Arts Museums of San Francisco. This database consists of high quality images of over
70,000 art works. The database was stored on a clus-ter, which consisted of 20 PCs containing
368 disks connected by a switched Ethernet. It occupied in seven 7-foot high racks.

Component
Total in
System

Total
Failed

%
Failed

SCSI Controller 44 1 2.3%

SCSI Cable 39 1 2.6%

SCSI Disk 368 7 1.9%

IDE Disk 24 6 25.0%

Disk Enclosure -
Backplane

46 13 28.3%

Disk Enclosure - Power
Supply

92 3 3.3%

Ethernet Controller 20 1 5.0%

Ethernet Switch 2 1 50.0%

Ethernet Cable 42 1 2.3%

CPU/Motherboard 20 0 0%

FIGURE 7.20 Failures of components in Tertiary Disk over eighteen months of operation.

Figure 7.20 shows the failure rates of the various components of Tertiary Disk. In
advance of building the system, the designers assumed that data disks would be the least reliable
part of the system, as they are both mechanical and plentiful. As Tertiary Disk was a large

CS2354 Advanced Computer Architecture

SCE 88 Dept of CSE

system with many redundant components, it had the potential to survive this wide range of
failures. Components were connected and mirrored images were placed no single failure could
make any image unavailable. This strategy, which initially appeared to be overkill, proved to be
vital.

This experience also demonstrated the difference between transient faults and hard faults.
Transient faults are faults that come and go, at least temporarily fixing themselves. Hard faults
stop the device from working properly, and will continue to misbehave until repaired.

Tandem

The next example comes from industry. Gray [1990] collected data on faults for Tandem
Computers, which was one of the pioneering companies in fault tolerant computing. Figure 7.21
graphs the faults that caused system failures between 1985 and 1989 in absolute faults per
system and in percentage of faults encoun-tered. The data shows a clear improvement in the
reliability of hardware and maintenance.

Disks in 1985 needed yearly service by Tandem, but they were re-placed by disks that
needed no scheduled maintenance. Shrinking number of chips and connectors per system plus
software’s ability to tolerate hardware faults reduced hardware’s contribution to only 7% of
failures by 1989. And when hardware was at fault, software embedded in the hardware device
(firmware) was often the culprit. The data indicates that software in 1989 was the major source
of reported outages (62%), followed by system operations (15%).

1985 1987 1989

CS2354 Advanced Computer Architecture

SCE 89 Dept of CSE

The problems with any such statistics are that these data only refer to what is reported; for
example, environmental failures due to power outages were not reported to Tandem because they
were seen as a local problem.

VAX

The next example is also from industry. Murphy and Gent [1995] measured faults in VAX
systems. They classified faults as hardware, operating system, system management, or
application/networking. Figure 7.22 shows their data for 1985 and 1993. They tried to improve the
accuracy of data on operator faults by having the system automatically prompt the operator on
each boot for the reason for that reboot. They also classified consecutive crashes to the same fault
as operator fault. Note that the hardware/operating system went from causing 70% of the failures
in 1985 to 28% in 1993. Murphy and Gent expected system management to be the primary
dependability challenge in the future.

CS2354 Advanced Computer Architecture

SCE 90 Dept of CSE

FCC

The final set of data comes from the government. The Federal Communications
Commission (FCC) requires that all telephone companies submit explanations when they
experience an outage that affects at least 30,000 people or lasts thirty minutes. These detailed
disruption reports do not suffer from the self-reporting problem of earlier figures, as investigators
determine the cause of the outage rather than operators of the equipment. Kuhn [1997] studied
the causes of outages between 1992 and 1994 and Enriquez [2001] did a follow-up study for the
first half of 2001. In addition to reporting number of outages, the FCC data includes the number
of customers affected and how long they were affected. Hence, we can look at the size and scope
of failures, rather than assuming that all are equally important. Figure 7.23 plots the absolute and
relative number of customer-outage minutes for those years, broken into four categories:

 Failures due to exceeding the network’s capacity (overload).

 Failures due to people (human).

 Outages caused by faults in the telephone network software (software).

 Switch failure, cable failure, and power failure (hardware).

These four examples and others suggest that the primary cause of failures in large
systems today is faults by human operators. Hardware faults have declined due to a decreasing
number of chips in systems, reduced power, and fewer connectors. Hardware dependability has
improved through fault tolerance techniques such as RAID. At least some operating systems are
considering reliability implications before new adding features, so in 2001 the failures largely
occur elsewhere.

4.6 Benchmarks of storage performance and availability

Transaction Processing Benchmarks

Transaction processing (TP, or OLTP for on-line transaction processing) is chiefly
concerned with I/O rate: the number of disk accesses per second, as opposed to data rate,
measured as bytes of data per second. TP generally involves changes to a large body of shared
information from many terminals, with the TP system guaranteeing proper behavior on a failure.
Suppose, for example, a bank’s computer fails when a customer tries to withdraw money. The
TP system would guarantee that the account is debited if the customer received the money and
that the account is unchanged if the money was not received. Airline reservations systems as well
as banks are traditional customers for TP.

This report led to the Transaction Processing Council, which in turn has led to seven
benchmarks since its founding.

The TPC benchmarks were either the first, and in some cases still the only ones, that have
these unusual characteristics:

Price is included with the benchmark results. The cost of hardware, software, and five-
year maintenance agreements is included in a submission, which en-ables evaluations based on
price-performance as well as high performance.

CS2354 Advanced Computer Architecture

SCE 91 Dept of CSE

Benchmark Data Size (GB)
Performance
Metric

Date of First
Results

A: Debit Credit (retired) 0.1 to 10
transactions per
second

July, 1990

B: Batch Debit Credit
(retired)

0.1 to 10
transactions per
second

July, 1991

C: Complex Query OLTP 100 to 3000
(minimum 0.07
* tpm)

new order
transactions per
minute

September, 1992

D: Decision Support
(retired)

100, 300, 1000 queries per hour December, 1995

H: Ad hoc decision support 100, 300, 1000 queries per hour October, 1999

R: Business reporting
decision support

1000 queries per hour August, 1999

W: Transactional web
benchmark

≈ 50, 500 web interactions
per second

July, 2000

FIGURE 7.31 Transaction Processing Council Benchmarks. The summary results include both the
performance metric and the price-performance of that metric. TPC-A, TPC-B, and TPC-D were

retired.

The data set generally must scale in size as the throughput increases. The benchmarks are
trying to model real systems, in which the demand on the sys-tem and the size of the data stored
in it increase together. It makes no sense, for example, to have thousands of people per minute
access hundreds of bank ac-counts.

The benchmark results are audited. Before results can be submitted, they must be
approved by a certified TPC auditor, who enforces the TPC rules that try to make sure that only
fair results are submitted. Results can be challenged and disputes resolved by going before the
TPC council.

Throughput is the performance metric but response times are limited. For ex-ample, with
TPC-C, 90% of the New-Order transaction response times must be less than 5 seconds.

An independent organization maintains the benchmarks. Dues collected by TPC pay for
an administrative structure including a Chief Operating Office. This organization settles disputes,
conducts mail ballots on approval of changes to benchmarks, hold board meetings, and so on.

SPEC System-Level File Server (SFS) and Web Benchmarks:

The SPEC benchmarking effort is best known for its characterization of processor
performance, but has created benchmarks for other fields as well. In 1990 seven companies
agreed on a synthetic benchmark, called SFS, to evaluate systems running the Sun Microsystems
network file service NFS. This benchmark was upgraded to SFS 2.0 (also called SPEC SFS97) to

CS2354 Advanced Computer Architecture

SCE 92 Dept of CSE

include support for NSF version 3, using TCP in addition to UDP as the transport protocol, and
making the mix of operations more realistic.

Figure 7.32 shows average response time versus throughput for four systems.
Unfortunately, unlike the TPC benchmarks, SFS does not normalize for different price
configurations. The fastest system in Figure 7.32 has 7 times the number of CPUs and disks as
the slowest system, but SPEC leaves it to you to calculate price versus performance. As
performance scaled to new heights, SPEC discovered bugs in the benchmark that impact the
amount of work done during the measurement periods. Hence, it was retired in June 2001.

SPEC WEB is a benchmark for evaluating the performance of World Wide Web servers.
The SPEC WEB99 workload simulates accesses to a web service provider, where the server
supports home pages for several organizations. Each home page is a collection of files ranging in
size from small icons to large docu-ments and images, with some files being more popular than
others. The workload defines four sizes of files and their frequency of activity:

less than 1 KB, representing an small icon: 35% of activity

1 to 10 KB: 50% of activity

10 to 100 KB: 14% of activity

100 KB to 1 MB: representing a large document and image,1% of activity

Figure 7.33 shows results for Dell computers. The performance result represents the number of
simultaneous connections the web server can support using the predefined workload. As the disk

system is the same, it appears that the large memory is used for a file cache to reduce disk I/O.

CS2354 Advanced Computer Architecture

SCE 93 Dept of CSE

System Name Result CPUs Result/
CPU

HTTP Version/OS Pentium III DRAM

PowerEdge
2400/667

732 1 732
IIS 5.0/Windows
2000

667 MHz
EB

2 GB

PowerEdge
2400/667

1270 1 1270
TUX 1.0/Red Hat
Linux 6.2

667 MHz
EB

2 GB

PowerEdge
4400/800

1060 2 530
IIS 5.0/Windows
2000

800 MHz
EB

4 GB

PowerEdge
4400/800

2200 2 1100
TUX 1.0/Red Hat
Linux 6.2

800 MHz
EB

4 GB

PowerEdge
6400/700

1598 4 400
IIS 5.0/Windows
2000

700 MHz
Xeon

8 GB

PowerEdge
6400/700

4200 4 1050
TUX 1.0/Red Hat
Linux 6.2

700 MHz
Xeon

8 GB

FIGURE 7.33 SPEC WEB99 results in 2000 for Dell computers. Each machine uses five 9GB,
10,000 RPM disks except the fifth system, which had seven disk. The first four have 256 KB of L2

cache while the last two have 2 MB of L2 cache.

4.7 Design and I/O System in Five Easy Pieces

The art of I/O system design is to find a design that meets goals for cost, dependability,
and variety of devices while avoiding bottlenecks to I/O performance. Avoiding bottlenecks
means that components must be balanced between main memory and the I/O device, because
performance and hence effective cost/performance can only be as good as the weakest link in the
I/O chain. Finally, storage must be dependable, adding new constraints on proposed designs.

In designing an I/O system, analyze performance, cost, capacity, and availability using
varying I/O connection schemes and different numbers of I/O devices of each type. Here is one
series of steps to follow in designing an I/O system. The answers for each step may be dictated
by market requirements or simply by cost, performance, and availability goals.

1. List the different types of I/O devices to be connected to the machine, or list the standard
buses that the machine will support.

2. List the physical requirements for each I/O device. Requirements include size, power,
connectors, bus slots, expansion cabinets, and so on.

3. List the cost of each I/O device, including the portion of cost of any controller needed for
this device.

4. List the reliability of each I/O device.

5. Record the CPU resource demands of each I/O device.

CS2354 Advanced Computer Architecture

SCE 94 Dept of CSE

This list should include

 Clock cycles for instructions used to initiate an I/O, to support operation of an I/O
device (such as handling interrupts), and complete I/O

 CPU clock stalls due to waiting for I/O to finish using the memory, bus, or cache
 CPU clock cycles to recover from an I/O activity, such as a cache flush
List the memory and I/O bus resource demands of each I/O device. Even when the CPU

is not using memory, the bandwidth of main memory and the I/O bus is limited.

The final step is assessing the performance and availability of the different ways to
organize these I/O devices. Performance can only be properly evaluated with simulation, though
it may be estimated using queuing theory. Reliability can be calculated assuming I/O devices fail
independently and are that MTTFs are exponentially distributed. Availability can be computed
from reliability by estimating MTTF for the devices, taking into account the time from failure to
repair.

Cost/performance goals affect the selection of the I/O scheme and physical design.
Performance can be measured either as megabytes per second or I/Os per second, depending on
the needs of the application. For high performance, the only limits should be speed of I/O
devices, number of I/O devices, and speed of memory and CPU. For low cost, the only expenses
should be those for the I/O devices themselves and for cabling to the CPU. Cost/performance
design, of course, tries for the best of both worlds. Availability goals depend in part on the cost
of unavailability to an organization.

To make these ideas clearer, the next dozen pages go through five examples. Each looks
at constructing a disk array with about 2 terabytes of capacity for user data with two sizes of
disks. To offer a gentle introduction to I/O design and evaluation, the examples evolve in
realism.

To try to avoid getting lost in the details, let’s start with an overview of the five
examples:

 Naive cost-performance design and evaluation: The first example calculates cost-
performance of an I/O system for the two types of disks. It ignores dependability
concerns, and makes the simplifying assumption of allowing 100% utilization of I/O
resources. This example is also the longest.

 Availability of the first example: The second example calculates the poor availability
of this naive I/O design.

 Response times of the first example: The third example uses queuing theory to
calculate the impact on response time of trying to use 100% of an I/O resource.

 More realistic cost-performance design and evaluation: Since the third example
shows the folly of 100% utilization, the fourth example changes the design to obey
common rules of thumb on utilization of I/O resources. It then evaluates cost-
performance.

 More realistic design for availability and its evaluation: Since the second example
shows the poor availability when dependability is ignored, this final example uses a
RAID 5 design. It then calculates availability and performance.

CS2354 Advanced Computer Architecture

SCE 95 Dept of CSE

UNIT V

MULTI-CORE ARCHITECTURES

Software and hardware multithreading - SMT and CMP architectures - Design issues -
Case studies - Intel Multi-core architecture - SUN CMP architecture - heterogeneous multi-core
processors - case study: IBM Cell Processor

5.1 Multi-threading

The ability of an operating system to execute different parts of a program, called threads,
simultaneously. The programmer must carefully design the program in such a way that all the
threads can run at the same time without interfering with each other

Advantages of Multi-threading

If a thread can not use all the computing resources of the CPU (because instructions
depend on each other's result), running another thread permits to not leave these idle. If several
threads work on the same set of data, they can actually share its caching, leading to better cache
usage or synchronization on its values.

If a thread gets a lot of cache misses, the other thread(s) can continue, taking advantage
of the unused computing resources, which thus can lead to faster overall execution, as these
resources would have been idle if only a single thread was executed

5.1.1 Two levels of thread

Two levels of thread User level(for user thread) Kernel level(for kernel thread)

User Threads

User threads are supported above the kernel and are implemented by a thread library at
the user level. The library provides support for thread creation, scheduling, and management
with no support from the kernel.Because the kernel is unaware of user-level threads, all thread
creation and scheduling are done in user space without the need for kernel intervention.

User-level threads are generally fast to create and manage User-thread libraries include
POSIX Pthreads,Mach C-threads,and Solaris 2 UI-threads.

Kernel Threads

Kernel threads are supported directly by the operating system: The kernel performs
thread creation, scheduling, and management in kernel space. Because thread management is
done by the operating system, kernel threads are generally slower to create and manage than are
user threads. Most operating systems-including Windows NT, Windows 2000, Solaris 2, BeOS,
and Tru64 UNIX (formerly Digital UN1X)-support kernel threads

Multi-threading Models

There are three models for thread libraries, each with its own trade-offs

 Many threads on one LWP (many-to-one)
 One thread per LWP (one-to-one)
 Many threads on many LWPs (many-to-many)

CS2354 Advanced Computer Architecture

SCE 96 Dept of CSE

Many-to-one

The many-to-one model maps many user-level threads to one kernel thread. Advantages:
Totally portable More efficient Disadvantages: cannot take advantage of parallelism The entire
process is block if a thread makes a blocking system call Mainly used in language systems,
portable libraries like solaris 2

One-to-one

The one-to-one model maps each user thread to a kernel thread. Advantages: allows
parallelism Provide more concurrency Disadvantages: Each user thread requires corresponding
kernel thread limiting the number of total threads Used in LinuxThreads and other systems like
Windows 2000,Windows NT

Many-to-many

The many-to-many model multiplexes many user-level threads to a smaller or equal
number of kernel threads. Advantages: Can create as many user thread as necessary Allows
parallelism Disadvantages: kernel thread can the burden the performance Used in the Solaris
implementation of Pthreads (and several other Unix implementations)?

5.2 SMT and CMP Architectures

Instruction-level parallelism(ILP)

 Wide-issue Superscalar processors (SS)

 Four or more instruction per cycle
 Executing a single program or thread
 Attempts to find multiple instructions to issue each cycle.
 Out-of-order execution => instructions are sent to execution units based on

instruction dependencies rather than program order

Thread-level parallelism(TLP)

 Fine-grained multithreaded superscalars(FGMS)

 Contain hardware state for several threads
 Executing multiple threads
 On any given cycle a processor executes instructions from one of the threads

 Multiprocessor(MP)

 Performance improved by adding more CPUs

Simultaneous Multithreading

The idea is issue multiple instructions from multiple threads each cycle

The Features are

 Fully exploit thread-level parallelism and instruction-level parallelism.

 Multiple functional units

 Modern processors have more functional units available then a single thread
can utilize.

CS2354 Advanced Computer Architecture

SCE 97 Dept of CSE

 Register renaming and dynamic scheduling

 Multiple instructions from independent threads can co-exist and co-execute.

Superscalar processor with no multithreading:

Only one thread is processed in one clock cycle

 Use of issue slots is limited by a lack of ILP.

 Stalls such as an instruction cache miss leaves the entire processor idle.

Fine grained Multithreading

Switches threads on every clock cycle

 Pro: hide latency of from both short and long stalls

 Con: Slows down execution of the individual threads ready to go. Only one thread
issues inst. In a given clock cycle.

Course-grained multithreading:

Switches threads only on costly stalls (e.g., L2 stalls)

 Pros: no switching each clock cycle, no slow down for ready-to-go threads.
Reduces no of completely idle clock cycles.

 Con: limitations in hiding shorter stalls

Simultaneous Multithreading:

Exploits TLP at the same time it exploits ILP with multiple threads using the issue slots
in a single-clock cycle.

 issue slots is limited by the following factors:

 Imbalances in the resource needs.
 Resource availability over multiple threads.
 Number of active threads considered.
 Finite limitations of buffer.
 Ability to fetch enough instructions from multiple threads.
 Practical limitations of what instructions combinations can issue from one

thread and multiple threads.

Performance Implications of SMT

 Single thread performance is likely to go down (caches, branch predictors,
registers, etc. are shared) – this effect can be mitigated by trying to prioritize one thread
 While fetching instructions, thread priority can dramatically influence total
throughput – a widely accepted heuristic (ICOUNT): fetch such that each thread has an
equal share of processor resources
 With eight threads in a processor with many resources, SMT yields throughput
improvements of roughly 2-4
 Alpha 21464 and Intel Pentium 4 are examples of SMT

CS2354 Advanced Computer Architecture

SCE 98 Dept of CSE

Effectively Using Parallelism on a SMT Processor

Parallel workload

threads SS MP2 MP4 FGMT SMT

1 3.3 2.4 1.5 3.3 3.3

2 -- 4.3 2.6 4.1 4.7

4 -- -- 4.2 4.2 5.6

8 -- -- -- 3.5 6.1

Instruction Throughput executing a parallel workload

Comparison of SMT vs Superscalar

SMT processors are compared to base superscalar processors in several key measures :

 Utilization of functional units.
 Utilization of fetch units.
 Accuracy of branch predictor.
 Hit rates of primary caches.
 Hit rates of secondary caches.

Performance improvement:

 Issue slots.

 Funtional units.

 Renaming registers.

5.2.1 CMP Architecture

 Chip-level multiprocessing(CMP or multicore): integrates two or more independent
cores(normally a CPU) into a single package composed of a single integrated
circuit(IC), called a die, or more dies packaged, each executing threads
independently.

 Every funtional units of a processor is duplicated.
 Multiple processors, each with a full set of architectural resources, reside on the same

die
 Processors may share an on-chip cache or each can have its own cache

CS2354 Advanced Computer Architecture

SCE 99 Dept of CSE

 Examples: HP Mako, IBM Power4
 Challenges: Power, Die area (cost)

Single core computer

Single core CPU chip

CS2354 Advanced Computer Architecture

SCE 100 Dept of CSE

Multi-core CPU chip

Core 1 Core 2 Core 3 Core
4

Chip Multithreading

Chip Multithreading = Chip Multiprocessing + Hardware Multithreading.

 Chip Multithreading is the capability of a processor to process multiple s/w threads
simulataneous h/w threads of execution.

 CMP is achieved by multiple cores on a single chip or multiple threads on a single core.

 CMP processors are especially suited to server workloads, which generally have high
levels of Thread-Level Parallelism(TLP).

CMP’s Performance
 CMP’s are now the only way to build high performance microprocessors , for a variety of

reasons:

 Large uniprocessors are no longer scaling in performance, because it is only possible to
extract a limited amount of parallelism from a typical instruction stream.

 Cannot simply ratchet up the clock speed on today’s processors,or the power dissipation
will become prohibitive.

 CMT processors support many h/w strands through efficient sharing of on-chip resources
such as pipelines, caches and predictors.

 CMT processors are a good match for server workloads,which have high levels of TLP
and relatively low levels of ILP.

CS2354 Advanced Computer Architecture

SCE 101 Dept of CSE

SMT and CMP

 The performance race between SMT and CMP is not yet decided.
 CMP is easier to implement, but only SMT has the ability to hide latencies.
 A functional partitioning is not exactly reached within a SMT processor due to the

centralized instruction issue.
 A separation of the thread queues is a possible solution, although it does not remove

the central instruction issue.
 A combination of simultaneous multithreading with the CMP may be superior.

 Research : combine SMT or CMP organization with the ability to create threads with
compiler support of fully dynamically out of a single thread.
 Thread-level speculation
 Close to multiscalar

5.3 DESIGN ISSUES:
SMT and CMP Architectures

They determine the performance measures of each processor in a precise manner. The
issue slots usage limitations and its issues also determine the performance.Why Multithreading
Today ILP is exhausted, TLP is in. Large performance gap between MEMORY and
PROCESSOR. Too many transistors on chip. More existing MT applications today.
Multiprocessors on a single chip. Long network latency, too

5.3.1DESIGN CHALLENGES OF SMT

Impact of fine grained scheduling on single thread performance?

A preferred thread approach sacrifices throughput and single threaded performance.
Unfortunately with a preferred thread, the processor is likely to sacrifice some throughput

Reason for loss of throughput

Pipeline is less likely to have a mix of instructions from several threads resulting in a
greater probability that either empty slots or a stall will occur

Design Challenges

Larger register file needed to hold multiple contexts.Not affecting clock cycle time,
especially in

 Instruction issue- more candidate instructions need to be considered
 Instruction completion- choosing which instructions to commit may be

challenging

Ensuring that cache and TLP conflicts generated by SMT do not degrade performance.
There are mainly two observations

 Potential performance overhead due to multithreading is small
 Efficiency of current superscalar is low with the room for significant

improvement

A SMT processor works well if Number of compute intensive threads does not exceed
the number of threads supported in SMT. Threads have highly different charecteristics For eg;
1 thread doing mostly integer operations and another doing mostly floating point operations

CS2354 Advanced Computer Architecture

SCE 102 Dept of CSE

It does not work well if Threads try to utilize the same functional units and for
assignment problems

 Eg; a dual core processor system, each processor having 2 threads simultaneously
 2 computer intensive application processes might end up on the same processor

instead of different processors

The problem here is the operating system does not see the difference between the SMT and real
processors !!!

Transient Faults

Faults that persist for a “short” duration. Cause is cosmic rays (e.g., neutrons).The effect
is knock off electrons, discharge capacitor.The Solution is no practical absorbent for cosmic
rays.1 fault per 1000 computers per year (estimated fault rate)

Processor Utilization vs. Latency

R = the run length to a long latency event

L = the amount of latency

Simultaneous & Redundantly Threaded Processor (SRT)

SRT = SMT + Fault Detection + Less hardware compared to replicated microprocessors
SMT needs ~5% more hardware over uniprocessor SRT adds very little hardware overhead to
existing SMT+ Better performance than complete replication better use of resources + Lower
cost avoids complete replication

SRT Design Challenges

Lock stepping doesn’t work because SMT may issue same instruction from redundant
threads in different cycles. Must carefully fetch/schedule instructions from redundant threads
since branch misprediction &cache miss will occur

Transient Fault Detection in CMPs

CRT borrows the detection scheme from the SMT-based simultaneously and
Redundantly Threaded (SRT) processors and applies the scheme to CMPs.

 replicated two communicating threads (leading & trailing threads)

CS2354 Advanced Computer Architecture

SCE 103 Dept of CSE

 Compare the results of the two.
 CRT executes the leading and trailing threads on different processors to achieve
load balancing and to reduce the probability of a fault corrupting both threads

Detection is based on replication but to which extent?.Itreplicates register values (in
register file in each core) but not memory values. The CRT’s leading thread commits stores only
after checking, so that memory is guaranteed to be correct.CRT compares only stores and
uncached loads, but not register values, of the two threads.

An incorrect value caused by a fault propagates through computations and is eventually
consumed by a store, checking only stores suffices for detection; other instructions commit
without checking.

CRT uses a store buffer (StB) in which the leading thread places its committed store
values and addresses. The store values and addresses of the trailing thread are compared against
the StB entries to determine whether a fault has occurred. (one checked store reaches to the
cache hierarchy)

Transient Fault Recovery for CMPs

Unlike CRT, CRTR must not allow any trailing instruction to commit before it is checked
for faults, so that the register state of the trailing thread may be used for recovery. However, the
leading thread in CRTR may commit register state before checking, as in CRT.

This asymmetric commit strategy allows CRTR to employ a long slack to absorb inter-
processor latencies. As in CRT, CRTR commits stores only after checking. In addition to
communicating branch outcomes, load addresses, load values, store addresses, and store values
like CRT, CRTR also communicates register values.

Challenges with this approach

 I-Cache:
Instruction bandwidth

CS2354 Advanced Computer Architecture

SCE 104 Dept of CSE

 I-Cache misses:
Since instructions are being grabbed from many different contexts,

instruction locality is degraded and the I-cache miss rate rises.
 Register file access time:

 Register file access time increases due to the fact that the regfile had to
significantly increase in size to accommodate many separate contexts.

 In fact, the HEP and Tera use SRAM to implement the regfile, which
means longer access times.

 Single thread performance
 Single thread performance significantly degraded since the context is

forced to switch to a new thread even if none are available.
 Very high bandwidth network, which is fast and wide
 Retries on load empty or store full

To maximize SMT performance Issue slots, Functional units, Renaming registers

5.4 Case Studies

5.4.1 Multicore architecture

A multi-core design in which a single physical processor contains the core logic of more
than one processor. Goal- enables a system to run more task simultaneously achieving greater
overall performance

Hyper-threading or multicore?

Early PCs-capable of doing single task at a time. Later multi-threading tech., came into
place. Intel’s multi-threading called Hyper-threading

Multi-core processors

Each core has its execution pipeline. No limitation for the number of cores that can be
placed in a single chip. Two cores run at slower speeds and lower temperatures. But the
combined throughput > single processor. The fundamental relationship
b/w freq. and power can be used to multiply the no. of cores from 2 to 4, 8 and even
higher

Intel-multicore architecture

 Intel Turbo Boost Tech.
 Intel Hyper Threading Tech.
 Intel Core Microarchitecture.
 Intel Advanced Smart Cache.
 Intel Smart Memory Access.

CS2354 Advanced Computer Architecture

SCE 105 Dept of CSE

Intel Smart Memory access

Benefits

 Multi-core performance.

 Dynamic scalability.

 Design and performance scalability

 Intelligent performance on-demand

 Increased performance on Highly-threaded apps.

 Scalable shared memory.

 Multi-level shared cache.

5.5 IBM CELL PROCESSOR

A chip with one PPC hyper-threaded core called PPE and eight specialized cores called
SPEs.The challenge to be solved by the Cell was to put all those cores together on a single chip.
This was made possible by the use of a bus with outstanding performance

The Cell processor can be split into four components:

 external input and output structures,

 the main processor called the Power Processing Element (PPE)

CS2354 Advanced Computer Architecture

SCE 106 Dept of CSE

 eight fully-functional co-processors called the Synergistic Processing Elements,
or SPEs,

 a specialized high-bandwidth circular data bus connecting the PPE, input/output
elements and the SPEs, called the Element Interconnect Bus or EIB.

5.5.1 Overview of the architecture of a Cell chip

POWERPC PROCESSOR ELEMENT:(PPE)

 The PowerPC Processor Element, usually denoted as PPE is a dual-threaded powerpc
processor version 2.02.

 This 64-bit RISC processor also has the Vector/SIMD Multimedia Extension.

 The PPE’s role is crucial in the Cell architecture since it is on the one hand running the
OS, and on the other hand controlling all other resources, including the SPEs .

 The PPE is made out of two main units:

1: The Power Processor Unit

2:The Power Processor Storage Subsystem (PPSS).

CS2354 Advanced Computer Architecture

SCE 107 Dept of CSE

PPE Block diagram

PPU:

It is the processing part of the PPE and is composed of:

 A full set of 64-bit PowerPC registers.
 32 128-bit vector multimedia registers.
 A 32KB L1 instruction cache.
 A 32KB L1 data cache.

All the common components of a ppc processors with vector/SIMD extensions
(instruction control unit, load and store unit, fixed-Point integer unit, floating-point unit, vector
unit, branch unit, virtual memory management unit).The PPU is hyper-threaded and supports 2
simultaneous threads.

PPSS

This handles all memory requests from the PPE and requests made to the PPE by other
processors or I/O devices. It is composed of:

 A unified 512-KB L2 instruction and data cache.

 Various queues

 A bus interface unit that handles bus arbitration and pacing on the Element
Interconnect Bus

SYNERGISTIC PROCESSOR ELEMENTS:SPE

Each Cell chip has 8 Synergistic Processor Elements. They are 128-bit RISC processor
which are specialized for data-rich, compute-intensive SIMD applications. This consist of two
main units.

1: The Synergistic Processor Unit (SPU)

2:The Memory Flow Controller (MFC)

CS2354 Advanced Computer Architecture

SCE 108 Dept of CSE

The Synergistic Processor Unit (SPU):

This deals with instruction control and execution. It includes various components:

 A register file of 128 registers of 128 bits each.

 A unified instruction and data 256-kB Local Store (LS).

 A channel-and-DMA interface.

 As usual, an instruction-control unit, a load and store unit, two fixed-point units,
a floating point unit.

The SPU implements a set of SIMD instructions, specific to the Cell. Each SPU is
independent, and has its own program counter. Instructions are fetched in its own Local Store
LS. Data are also loaded and stored in the LS

The Memory Flow Controller (MFC)

It is actually the interface between the SPU and the rest of the Cell chip.MFC interfaces
the SPU with the EIB. In addition to a whole set of MMIO registers, this contains a DMA
controller.

Bus design and communication among the Cell

1: The Element Interconnect Bus:

This bus makes it possible to link all parts of the chip. The EIB itself is made out of a 4-
ring structure (two clockwise, and two counterclockwise) that is used to transfer data, and a tree
structure used to carry commands. It is actually controlled by what is called the Data Arbitrer.
This structure allows 8 simultaneous transactions on the bus.

2: Input/output interfaces:

The Memory Interface Controller (MIC).:

 It provides an interface between the EIB and the main storage.
 It currently supports two Rambus Extreme Data Rate (XDR) I/O (XIO) memory

channels.

CS2354 Advanced Computer Architecture

SCE 109 Dept of CSE

The Cell Broadband Engine Interface (BEI):

 This is the interface between the Cell and I/O devices,such as GPUs and various
bridges.

 It supports two Rambus FlexIO external I/O channels.
 One of this channel only supports non-coherent transfers. The other supports

either coherent or noncoherenT.

Key Attributes of Cell

 Cell is Multi-Core

 Cell is a Flexible Architecture

 Cell is a Broadband Architecture

 Cell is a Real-Time Architecture

 Cell is a Security Enabled Architecture

CS2354 Advanced Computer Architecture

SCE 110 Dept of CSE

UNIT I

PART-A

1. Give few essential features of RISC architecture.

The RISC-based machines focused the attention of designers on two critical
performance techniques, the exploitation of instruction level parallelism (initially through
pipelining and later through multiple instruction issue) and the use of caches (initially in simple
forms and later using more sophisticated organizations and optimizations).

The RISC-based computers raised the performance bar, forcing prior architectures to
keep up or disappear.or/ both)

RISC architectures are characterized by a few key properties, which dramatically simplify their
implementation:

• All operations on data apply to data in registers and typically change the entire register (32 or
64 bits per register).

• The only operations that affect memory are load and store operations that move data from
memory to a register or to memory from a register, respectively.

Load and store operations that load or store less than a full register (e.g., a byte, 16 bits, or 32
bits) are often available.

• The instruction formats are few in number with all instructions typically being one size. These
simple properties lead to dramatic simplifications in the implementation of pipelining, which is
why these instruction sets were designed this way.

2. Power sensitive designs will avoid fixed field decoding. Why?

In RISC architecture, register specifiers are at a fixed location and decoding is done
in parallel with reading registers. This technique is known as 'fixed field decoding'. In this
method, we may read a register which we may not use. This doesn't help, but also doesn't hurt
the performance. In case of power sensitive designs, it does waste energy for reading an
unnecessary register.

3. Give the causes of structural hazards.

CS2354 Advanced Computer Architecture

SCE 111 Dept of CSE

4. Give an example of result forwarding technique to minimize data hazard stalls. Is
forwarding a software technique?

No, it is a hardware technique

Example:

5. Give a sequence of code that has true dependence, anti-dependence and control
dependence in it.

true dependence: Instrns 1,2 (R0)

antidependence: Instructions 3,4 (R1)

output dependence: Instructions 2,3 (F4); 4,5 (R1)

6. What is the flaw in 1-bit branch prediction scheme?

7. What is the key idea behind the implementation of hardware speculation?

CS2354 Advanced Computer Architecture

SCE 112 Dept of CSE

8. What is trace scheduling? Which type of processors use this technique?

Trace scheduling is useful for processors with a large number of issues per
clock, w here conditional or predicated execution is inappropriate or unsupported, and where
simple loop unrolling may not be sufficient by itself to uncover enough ILP to keep the
processor busy. Trace scheduling is a way to organize the global code motion process, so as to
simplify the code scheduling by incurring the costs of possible code motion on the less
frequent paths.

There are two steps to trace scheduling. The first step, called trace selection, tries
to find a likely sequence of basic blocks whose operations will be put together into a
smaller number of instructions; this sequence is called a trace. Loop unrolling is used to
generate long traces, since loop branches are taken with high probability.

Once a trace is selected, the second process, called trace compaction, tries to squeeze
the trace into a small number of wide instructions. Trace compaction is code scheduling;
hence, it attempts to move operations as early as it can in a sequence (trace), packing the
operations into as few wide instructions (or issue packets) as possible.

10 . Mention few limits on Instruction Level Parallelism.

1. Limitations on the Window Size and Maximum Issue Count

2. Realistic Branch and Jump Prediction

3. The Effects of Finite Registers

4. The Effects of Imperfect Alias Analysis

11. List the various data dependence.

 Data dependence
 Name dependence
 Control Dependence

12. What is Instruction Level Parallelism?

Pipelining is used to overlap the execution of instructions and improve performance. This
potential overlap among instructions is called instruction level parallelism (ILP) since the
instruction can be evaluated in parallel.

13. Give an example of control dependence?

if p1 {s1;}

if p2 {s2;}

CS2354 Advanced Computer Architecture

SCE 113 Dept of CSE

S1 is control dependent on p1, and s2 is control dependent on p2

14. What is the limitation of the simple pipelining technique?

These technique uses in-order instruction issue and execution. Instructions are issued in
program order, and if an instruction is stalled in the pipeline, no later instructions can proceed.

15. Briefly explain the idea behind using reservation station?

Reservation station fetches and buffers an operand as soon as available, eliminating the
need to get the operand from a register.

16. Give an example for data dependence.

Loop: L.D F0,0(R1) ADD.D F4,F0,F2 S.D F4,0(R1) DADDUI R1,R1,#-8 BNE R1,R2,
loop

17. Explain the idea behind dynamic scheduling?

In dynamic scheduling the hardware rearranges the instruction execution to reduce the
stalls while maintaining data flow and exception behavior.

18. Mention the advantages of using dynamic scheduling?

It enables handling some cases when dependences are unknown at compile time and it
simplifies the compiler. It allows code that was compiled with one pipeline in mind run
efficiently on a different pipeline.

19. What are the possibilities for imprecise exception?

The pipeline may have already completed instructions that are later in program order than
instruction causing exception. The pipeline may have not yet completed some instructions that
are earlier in program order than the instructions causing exception.

20. What are multilevel branch predictors?

These predictors use several levels of branch-prediction tables together with an algorithm
for choosing among the multiple predictors.

21. What are branch-target buffers?

To reduce the branch penalty we need to know from what address to fetch by end of IF
(instruction fetch). A branch prediction cache that stores the predicted address for the next
instruction after a branch is called a branch-target buffer or branch target cache.

22. Briefly explain the goal of multiple-issue processor?

The goal of multiple issue processors is to allow multiple instructions to issue in a clock
cycle. They come in two flavors: superscalar processors and VLIW processors.

23. What is speculation?

Speculation allows execution of instruction before control dependences are
resolved.

24. Mention the purpose of using Branch history table?

It is a small memory indexed by the lower portion of the address of the branch
instruction. The memory contains a bit that says whether the branch was recently taken or not.

CS2354 Advanced Computer Architecture

SCE 114 Dept of CSE

25. What are super scalar processors?

Superscalar processors issue varying number of instructions per clock and are either
statically scheduled or dynamically scheduled.

26. Mention the idea behind hardware-based speculation?

It combines three key ideas: dynamic branch prediction to choose which instruction to
execute, speculation to allow the execution of instructions before control dependences are
resolved and dynamic scheduling to deal with the scheduling of different combinations of basic
blocks.

27. What are the fields in the ROB?

Instruction type Destination field Value field Ready field

28. How many branch selected entries are in a (2,2) predictors that has a total of 8K bits in
a prediction buffer?

number of prediction entries selected by the branch = 8K number of prediction entries
selected by the branch = 1K

29. What is the advantage of using instruction type field in ROB?

The instruction field specifies whether instruction is a branch or a store or a register
operation

30. Mention the advantage of using tournament based predictors?

The advantage of tournament predictor is its ability to select the right predictor for right
branch.

PART-B

1. What is instruction-level parallelism? Explain in details about the various dependences caused
in ILP?

2. Explain in details about static branch prediction and dynamic branch prediction

3. Explain the techniques to overcome data hazards with dynamic scheduling?

4. Explain in detail the hardware based speculation for a MIPS processor

CS2354 Advanced Computer Architecture

SCE 115 Dept of CSE

UNIT-II

PART - A

1. What is loop unrolling?

A simple scheme for increasing the number of instructions relative to the branch and
overhead instructions is loop unrolling. Unrolling simply replicates the loop body multiple times,
adjusting the loop termination code.

2. When static branch predictors are used?

They are used in processors where the expectation is that the branch behavior is highly
predictable at compile time. Static predictors are also used to assists dynamic predictors.

3. Mention the different methods to predict branch behavior?

Predict the branch as taken Predict on basis of branch direction (either forward or
backward) Predict using profile information collected from earlier runs.

4. Explain the VLIW approach?

They uses multiple, independent functional units. Rather than attempting to issue
multiple, independent instructions to the units, a VLIW packages the multiple operations into
one very long instruction.

5. Mention the techniques to compact the code size in instructions?

Using encoding techniques Compress the instruction in main memory and expand them
when they are read into the cache or are decoded.

6. Mention the advantage of using multiple issue processor?

They are less expensive. They have cache based memory system. More parallelism.

7. What are loop carried dependence?

They focuses on determining whether data accesses in later iterations are dependent on
data values produced in earlier iterations; such a dependence is called loop carried dependence.
e.g for(i=1000;i>0;i=i-1) x[i]=x[i]+s;

8. Mention the tasks involved in finding dependences in instructions?

Good scheduling of code. Determining which loops might contain parallelism
Eliminating name dependence

9. Use the G.C.D test to determine whether dependence exists in the following loop:
for(i=1;i<=100;i=i+1) X[2*i+3]=X[2*i]*5.0;

Solution: a=2,b=3,c=2,d=0 GCD(a,c)=2 and d-b=-3 Since 2 does not divide -3, no
dependence is possible.

10. What is software pipelining?

Software pipelining is a technique for reorganizing loops such that each iteration in the
software pipelined code is made from instruction chosen from different iterations of the original
loop.

11. What is global code scheduling?

CS2354 Advanced Computer Architecture

SCE 116 Dept of CSE

Global code scheduling aims o compact code fragment with internal control structure into
the shortest possible sequence that preserves the data and control dependence. Finding a shortest
possible sequence is finding the shortest sequence for the critical path.

12. What is trace?

Trace selection tries to find a likely sequence of basic blocks whose operations will be
put together into a smaller number of instructions; this sequence is called trace.

13. Mention the steps followed in trace scheduling?

Trace selection Trace compaction

14. What is superblock?

Superblocks are formed by a process similar to that used for traces, but are a form of
extended basic block, which are restricted to a single entry point but allow multiple exits.

15. Mention the advantages of predicated instructions?

Remove control dependence Maintain data flow enforced by branch Reduce overhead of
global code scheduling

16. Mention the limitations of predicated instructions?

They are useful only when the predicate can be evaluated early. Predicated instructions
may have speed penalty.

17. What is poison bit?

Poison bits are a set of status bits that are attached to the result registers written by the
speculated instruction when the instruction causes exceptions. The poison bits cause a fault hen a
normal instruction attempts to use the register.

18. What are the disadvantages of supporting speculation in hardware?

Complexity Additional hardware resources required

19. Mention the methods for preserving exception behavior?

Ignore Exception Instructions that never raise exceptions are used Using poison bits
Using hardware buffers

20. What is an instruction group?

It is a sequence of consecutive instructions with no register data dependence among them.
All the instructions in the group could be executed in parallel. An instruction group can be
arbitrarily long.

PART-B

1. Explain loop unrolling with an example? Loop unrolling technique Example

2. Discuss about the VLIW approach? VLIW approach basic idea

3. Explain the different techniques to exploit and expose more parallelism using compiler
support?

4. Explain how hardware supports for exposing more parallelism at compile time?

CS2354 Advanced Computer Architecture

SCE 117 Dept of CSE

5. Differentiate hardware and software speculation mechanisms?

6. Explain the limitations of ILP?

UNIT III

PART A

1. What do you think are the reasons for the increasing importance of multi-processors?

2. Define process and thread in the context of multi-processors.

With an MIMD, each processor is executing its own instruction stream. In many cases,
each processor executes a different process. A process is a segment of code that may be run
independently; the state of the process contains all the information necessary to execute that
program on a processor. In a multiprogrammed environment, where the processors may be
running independent tasks, each process is typically independent of other processes. It is also
useful to be able to have multiple processors executing a single program and sharing the code
and most of their address space. When multiple processes share code and data in this way,
they are often called threads. Today, the term thread is often used in a casual way to refer to
multiple loci of execution that may run on different processors, even when they do not share an
address space. For example, a multithreaded architecture actually allows the simultaneous
execution of multiple processes, with potentially separate address spaces, as well as multiple
threads that share the same address space.

3. What do you understand by grain size?. What is it’s impact on parallelism?

Although the amount of computation assigned to a thread, called the grain size, is
important in considering how to exploit thread-level parallelism efficiently, the important
qualitative distinction from instruction-level parallelism is that thread-level parallelism is
identified at a high level by the software system and that the threads consist of hundreds to
millions of instructions that may be executed in parallel.

Threads can also be used to exploit data-level parallelism, although the overhead is
likely to be higher than would be seen in an SIMD computer. This overhead means that grain
size must be sufficiently large to exploit the parallelism efficiently. For example, although a
vector processor (see Appendix F) may be able to efficiently parallelize operations on short
vectors, the resulting grain size when the parallelism is split among many threads may be so
small that the overhead makes the exploitation of the parallelism prohibitively expensive.

CS2354 Advanced Computer Architecture

SCE 118 Dept of CSE

4. Why Symmetric Shared memory architecture is called as UMA?

Because there is a single main memory that has a symmetric relationship to all
processors and a uniform access time from any processor, these multiprocessors are
most often called symmetric (shared-memory) multiprocessors (SMPs), and this style of
architecture is sometimes called uniform memory access (UMA), arising from the fact that all
processors have a uniform latency from memory, even if the memory is organized into multiple
banks. This type of symmetric shared-memory architecture is currently by far the most
popular organization.

5. List the two models available for communication in multi-processing environment.

Shared memory and Message passing multiprocesors

6. What are the challenges in parallel processing?

The first hurdle has to do with the limited parallelism available in programs, and the
second arises from the relatively high cost of communications. Limitations in available
parallelism make it difficult to achieve good speedups in any parallel processor.

The second major challenge in parallel processing involves the large latency of remote
access in a parallel processor. In existing shared-memory multiprocessors, communication of
data between processors may cost anywhere from 50 clock cycles (for multicores) to over 1000
clock cycles (for large-scale multiprocessors), depending on the communication mechanism,
the type of interconnection network, and the scale of the multiprocessor. The effect of long
communication delays is clearly substantial.

7. What do you understand by Cache coherence Problem? Give an example.

Unfortunately, caching shared data introduces a new problem because the view of
memory held by two different processors is through their individual caches, which, without
any additional precautions, could end up seeing two different values. Figure 4.3 illustrates the
problem and shows how two different processors can have two different values for the same
location. This difficulty is generally referred to as the cache coherence problem.

8. When can we say that the memory is coherent in a multi-processor system?

A memory system is coherent if

1. A read by a processor P to a location X that follows a write by P to X, with no
writes of X by another processor occurring between the write and the read by P, always returns
the value written by P.

2. A read by a processor to location X that follows a write by another processor to X
returns the written value if the read and write are sufficiently separated in time and no other
writes to X occur between the two accesses.

3. Writes to the same location are serialized; that is, two writes to the same location by
any two processors are seen in the same order by all processors. For example, if the values 1
and then 2 are written to a location, processors can never read the value of the location as 2 and
then later read it as 1.

The first property simply preserves program order—we expect this property to be true
even in uniprocessors. The second property defines the notion of what it means to have a

CS2354 Advanced Computer Architecture

SCE 119 Dept of CSE

coherent view of memory: If a processor could continuously read an old data value, we would
clearly say that memory was incoherent.

9. Why serialization of reads and writes are important in an multi-processor
environment?

The need for write serialization is more subtle, but important in an multi-processor
environment. Suppose we did not serialize writes, and processor PI writes location X followed
by P2 writing location X. Serializing the writes ensures that every processor will see the
write done by P2 at some point. If we did not serialize the writes, it might be the case that
some processor could see the write of P2 first and then see the write of PI, maintaining the
value written by PI indefinitely. The simplest way to avoid such difficulties is to ensure that all
writes to the same location are seen in the same order; this property is called write serialization.

10. Define memory coherence and consistency properties. Why are they important?

Informally, we could say that a memory system is coherent if any read of a data written
value of that data item. This definition, although intuitively appealing, is vague and
simplistic; the reality is much more complex. This simple definition contains two
different aspects of memory system behavior, both of which are critical to writing correct
shared-memory programs. The first aspect, called coherence, defines what values can be
returned by a read. The second aspect, called consistency, determines when a written value will
be returned by a read.

Coherence and consistency are complementary: Coherence defines the behavior of reads
and writes to the same memory location, while consistency defines the behavior of reads and
writes with respect to accesses to other memory locations. For now, make the following two
assumptions. First, a write does not complete (and allow the next write to occur) until all
processors have seen the effect of that write. Second, the processor does not change the order of
any write with respect to any other memory access. These two conditions mean that if a
processor writes location A followed by location B, any processor that sees the new value of B
must also see the new value of A. These restrictions allow the processor to reorder reads, but
forces the processor to finish a write in program order.

11. List the two protocols used to track the status of the shared data block. How the status
is maintained in both the schemes?

The protocols to maintain coherence for multiple processors are called cache coherence
protocols. Key to implementing a cache coherence protocol is tracking the state of any
sharing of a data block. There are two classes of protocols, which use different techniques to
track the sharing status, in use:

a. Directory based—The sharing status of a block of physical memory is kept in just one
location, called the directory; Directory-based coherence has slightly higher implementation
overhead than snooping, but it can scale to larger processor counts. The Sun Tl design, uses
directories, albeit with a central physical memory.

b. Snooping—Every cache that has a copy of the data from a block of physical memory also
has a copy of the sharing status of the block, but no centralized state is kept. The caches are all
accessible via some broadcast medium (a bus or switch), and all cache controllers monitor or
snoop on the medium to determine whether or not they have a copy of a block that is requested

CS2354 Advanced Computer Architecture

SCE 120 Dept of CSE

on a bus or switch access.

12. What do you understand by write update protocol?

The alternative to an invalidate protocol is to update all the cached copies of a data item
when that item is written. This type of protocol is called a write update or write broadcast
protocol. Because a write update protocol must broadcast all writes to shared cache lines, it
consumes considerably more bandwidth. For this reason, all recent multiprocessors have opted to
implement a write invalidate protocol.

13. Which protocol is more suited for distributed shared memory architecture with large
number of processors. Why?

The protocols to maintain coherence for multiple processors are called cache coherence
protocols. Key to implementing a cache coherence protocol is tracking the state of any
sharing of a data block. There are two classes of protocols, which use different techniques to
track the sharing status, in use:

a. Directory based—The sharing status of a block of physical memory is kept in just one
location, called the directory; Directory-based coherence has slightly higher implementation
overhead than snooping, but it can scale to larger processor counts. The Sun Tl design, uses
directories, albeit with a central physical memory.

b. Snooping—Every cache that has a copy of the data from a block of physical memory also
has a copy of the sharing status of the block, but no centralized state is kept. The caches are all
accessible via some broadcast medium (a bus or switch), and all cache controllers monitor or
snoop on the medium to determine whether or not they have a copy of a block that is requested
on a bus or switch access.

14.What is multi threading?

Multithreading allows multiple threads to share the functional uits of the single processor
in an overlapping fashion.

15. What is fine grained multithreading?

It switches between threads on each instruction, causing the execution of multiple threads
to be interleaved.

16. What is coarse grained multithreading?

It switches threads only on costly stalls. Thus it is much less likely to slow down the
execution of an individual thread.

PART-B

1. Explain the concepts of centralized shared-memory and distributed-memory
archi tecture for multi- processors with suitable block diagrams.
2. Discuss the various memory consistency models that are applicable for multi-processor
systems
3. What are the metrics used to measure the performance of an I/O system? Discuss
them with respect to Transaction Processing Benchmarks (6 marks).
4. Explain the basic implementation of Snooping Protocols with suitable transitions
Diagrams

CS2354 Advanced Computer Architecture

SCE 121 Dept of CSE

5. Explain the concepts of Multithreading.

UNIT IV

PART A

1. What is server utilization?

Mean number of tasks being serviced divided by service rate Server utilization = Arrival
Rate/Server Rate The value should be between 0 and 1 otherwise there would be more tasks
arriving than could be serviced.

2. What are the steps to design an I/O system?

 Naïve cost-performance design and evaluation

 Availability of naïve design

 Response time

 Realistic cost-performance, design and evaluation

 Realistic design for availability and its evaluation.

3. Briefly discuss about classification of buses?

I/O buses - These buses are lengthy ad have any types of devices connected to it. CPU
memory buses – They are short and generally of high speed.

4. Explain about bus transactions?

Read transaction – Transfer data from memory Write transaction – Writes data to
memory

5. What is the bus master?

Bus masters are devices that can initiate the read or write transaction. E.g CPU is always
a bus master. The bus can have many masters when there are multiple CPU’s and when the Input
devices can initiate bus transaction.

6. Mention the advantage of using bus master?

It offers higher bandwidth by using packets, as opposed to holding the bus for full
transaction.

7. What is spilt transaction?

The idea behind this is to split the bus into request and replies, so that the bus can be
used in the time between request and the reply

8. What do you understand by true sharing misses?

True sharing misses are a type of coherent misses that arise from the communication of
data through the cache coherence mechanism. In an invalidation based protocol, the first write
by a processor to a shared cache block causes an invalidation to establish ownership of that
block. Additionally, when another processor attempts to read a modified word in that cache
block, a miss occurs and the resultant block is transferred. Both these misses are classified as
true sharing misses since they directly arise from the sharing of data among processors.

CS2354 Advanced Computer Architecture

SCE 122 Dept of CSE

9. Assume that words xl and x2 are in the same cache block, which is in the shared state
in the caches of both PI and P2. Assuming the following sequence of events, identify each
miss as a true sharing miss, a false sharing miss, or a hit. Any miss that would occur if the
block size were one word is designated a true sharing miss.

Here are classifications by time step:

1. This event is a true sharing miss, since xl was read by P2 and needs to be invalidated from P2.

2. This event is a false sharing miss, since x2 was invalidated by the write of xl in PI, but that
value of xl is not used in P2.

3. This event is a false sharing miss, since the block containing xl is marked shared due to the
read in P2, but P2 did not read xl. The cache block containing xl will be in the shared state after
the read by P2; a write miss is required to obtain exclusive access to the block. In some
protocols this will be handled as an upgrade request, which generates a bus invalidate, but does
not transfer the cache block.

4. This event is a false sharing miss for the same reason as step 3.

5. This event is a true sharing miss, since the value being read was written by P2.

10. Giving priority to read misses over writes reduces miss penalty. How?

Giving priority to read misses over writes to reduce miss penalty—A write buffer is a
good place to implement this optimization. Write buffers create hazards because they hold the
updated value of a location needed on a read miss—that is, a read-after-write hazard through
memory. One solution is to check the contents of the write buffer on a read miss. If there are no
conflicts, and if the memory system is available, sending the read before the writes reduces the
miss penalty. Most processors give reads priority over writes.

11. What is the impact of doubling associativity while doubling the cache size on the size
of the index in Cache mapping?

CS2354 Advanced Computer Architecture

SCE 123 Dept of CSE

12. List the Six basic optimizations of Cache?

 Larger block size to reduce miss rate Bigger caches to reduce miss rate Higher
associativity to reduce miss rate

 Multilevel caches to reduce miss penalty

 Giving priority to read misses over writes to reduce miss penalty

 Avoiding address translation during indexing of the cache to reduce hit time

13. What is sequential inter-leaving? It is implemented in which level of the memory
hierarchy?

Sequential inter-leaving is implemented at Cache level. It is one of the optimization
technique used to improve cache performance.

Multibanked Caches are used to Increase Cache Bandwidth. Clearly, banking works best
when the accesses naturally spread themselves across the banks, so the mapping of addresses to
banks affects the behavior of the memory system. A simple mapping that works well is to
spread the addresses of the block sequentially across the banks, called sequential interleaving.
For example, if there are four banks, bank 0 has all blocks whose address modulo 4 is 0; bank 1
has all blocks whose address modulo 4 is 1; and so on. Figure 5.6 shows this interleaving.

PART B

1. Write Short notes on Compulsory, Capacity and conflict misses in Cahce.
2. Explain how write invalidate protocol maintain the coherence requirement?
3. Discuss various types of Coherence misses with examples
4. Explain the internal organization of a 64-bit DRAM Technology with suitable block

diagram
5. Give the summary of the five standard RAID levels. (8 marks)
6. Discuss the Advanced Optimizations for improving Cache Performance. Give suitable

Examples.
7. Write Short notes on Compiler Optimizations to reduce the miss rate.

CS2354 Advanced Computer Architecture

SCE 124 Dept of CSE

UNIT V

PART A

1. Define software multithreading

The ability of an operating system to execute different parts of a program, called
threads, simultaneously. The programmer must carefully design the program in such a
way that all the threads can run at the same time without interfering with each other

2. What are the advantages of multithreading

If a thread can not use all the computing resources of the CPU (because instructions
depend on each other's result), running another thread permits to not leave these idle. If
several threads work on the same set of data, they can actually share its caching, leading to
better cache usage or synchronization on its values.

If a thread gets a lot of cache misses, the other thread(s) can continue, taking
advantage of the unused computing resources, which thus can lead to faster overall
execution, as these resources would have been idle if only a single thread was executed

3. What are the two levels of thread?

 User Threads

 Kernel Threads

4. What are the multithreading models available?

 Many threads on one LWP (many-to-one)
 One thread per LWP (one-to-one)
 Many threads on many LWPs (many-to-many)

5. What is Many-to-one model?

The many-to-one model maps many user-level threads to one kernel thread.
Advantages: Totally portable More efficient Disadvantages: cannot take advantage of
parallelism The entire process is block if a thread makes a blocking system call Mainly
used in language systems, portable libraries like solaris 2

6. What is One-to-one model?

The one-to-one model maps each user thread to a kernel thread. Advantages:
allows parallelism Provide more concurrency Disadvantages: Each user thread requires
corresponding kernel thread limiting the number of total threads Used in LinuxThreads
and other systems like Windows 2000,Windows NT

7. What is Many-to-many model?

The many-to-many model multiplexes many user-level threads to a smaller or
equal number of kernel threads. Advantages: Can create as many user thread as necessary
Allows parallelism Disadvantages: kernel thread can the burden the performance Used in
the Solaris implementation of Pthreads (and several other Unix implementations)

8. What are the factors will affect issue slot?

 Imbalances in the resource needs.

CS2354 Advanced Computer Architecture

SCE 125 Dept of CSE

 Resource availability over multiple threads.
 Number of active threads considered.
 Finite limitations of buffer.
 Ability to fetch enough instructions from multiple threads.
 Practical limitations of what instructions combinations can issue from one

thread and multiple threads.

9. Give Comparison of SMT vs Superscalar

SMT processors are compared to base superscalar processors in several key
measures:

 Utilization of functional units.
 Utilization of fetch units.
 Accuracy of branch predictor.
 Hit rates of primary caches.
 Hit rates of secondary caches.

10. Draw the architecture of Single core computer

11. What are the design issues of SMT & CMP architectures?

They determine the performance measures of each processor in a precise manner. The
issue slots usage limitations and its issues also determine the performance.Why
Multithreading Today ILP is exhausted, TLP is in. Large performance gap between
MEMORY and PROCESSOR. Too many transistors on chip. More existing MT
applications today. Multiprocessors on a single chip. Long network latency, too

12. What is a Multi-core processor?

Each core has its execution pipeline. No limitation for the number of cores that can be
placed in a single chip. Two cores run at slower speeds and lower temperatures. But the
combined throughput > single processor. The fundamental relationship b/w freq. and
power can be used to multiply the no. of cores from 2 to 4, 8 and even higher

CS2354 Advanced Computer Architecture

SCE 126 Dept of CSE

13. What are the benefits of Intel Multi-core processor?

 Multi-core performance.

 Dynamic scalability.

 Design and performance scalability

 Intelligent performance on-demand

 Increased performance on Highly-threaded apps.

 Scalable shared memory.

14. What is a IBM cell processor?

A chip with one PPC hyper-threaded core called PPE and eight specialized cores
called SPEs.The challenge to be solved by the Cell was to put all those cores together on
a single chip. This was made possible by the use of a bus with outstanding performance

The Cell processor can be split into four components:

 external input and output structures,

 the main processor called the Power Processing Element (PPE)

 eight fully-functional co-processors called the Synergistic Processing Elements,
or SPEs,

 a specialized high-bandwidth circular data bus connecting the PPE, input/output
elements and the SPEs, called the Element Interconnect Bus or EIB.

PART B

1. Explain about Software and hardware multithreading
2. Give the explanation of SMT and CMP architectures with block diagram
3. What are the Design issues to be considered in SMT and CMP architecture?Explain
4. Explain about Intel Multi-core architecture
5. Give the explanation aboutIBM Cell Processor

CS2354 Advanced Computer Architecture

SCE 127 Dept of CSE

GLOSSARY

1BP: 1-bit branch predictor

4 C's - compulsory Misses: the first time a block is accessed by the cache

4 C's - capacity misses: blocks must be evicted due to the size of the cache.

4 C's - coherence Miss: processors are accessing the same block. Processor A writes to the

block. Even though Processor B has the block in its cache, it is a miss, because the block is no

longer up-to-date.

4 C's - conflict Misses: associated with set associative and direct mapped caches - another data

address needs the cache block and must replace the data currently in the cache.

ALAT: advance load table - stores advance information about load operations

Aliasing: in the BTB, when two addresses overlap with the same BTB entry, this is called

aliasing. Aliasing should be kept to <1%.

ALU: arithmetic logic unit

AMAT: average memory access time

AMAT: Average Memory Access Time = hit time + miss rate * miss penalty

Amdahl's Law: an equation to determine the improvement of a system when only a portion of

the system is improved.

Architectural registers: registers (Floating point and General Purpose) that are visible to the

programmer.

ARF: architectural register file or retirement register file

Asynchronous Message Passing: a processor requests data, then continues processing

instructions while message is retrieved.

CS2354 Advanced Computer Architecture

SCE 128 Dept of CSE

BHT: branch history table - records if branch was taken or not taken.

Blocking cache: the cache services only one block at a time, blocking all other requests

BTB: branch target buffer - keeps track of what address was taken last time the processor

encountered this instruction.

Cache: a collection of data duplicating original values stored elsewhere on a computer

Cache coherence definition #1: Definition #1 - A read R from address X on processor P1

returns the value written by the most recent write W to X on P1 if no other processor has written

to X between W and R. http://www.numascale.com/cache-coherence.html

Cache coherence definition #2: Definition #2 - If P1 writes to X and P2 reads X after a

sufficient time, and there are no other writes to X in between, P2’s read returns the value written

by P1’s write.

Cache coherence definition #3: Definition #3 - Writes to the same location are serialized:two

writes to location X are seen in the same order by all processors.

Cache hit: desired data is in the cache and is up-to-date

Cache miss: desired data is not in the cache or is dirty

Cache review: a cache review can be found at

Cache thrashing: when two or more addresses are competing for the same cache block. The

processor is requesting both addresses, which results in each access evicting the previous access.

CDB: common data bus

Check pointing: store the state of the CPU before a branch is taken. Then if the branch is a

misprediction, restore the CPU to correct state. Don't store to memory until it is determined this

is the correct branch.

http://www.numascale.com/cache-coherence.html

CS2354 Advanced Computer Architecture

SCE 129 Dept of CSE

CISC Processor: complex instruction set

CMP: chip multiprocessor

Coarse multi-threading: the thread being processed changes every few clock cycles

Coherence: the consistency of shared resource data that ends up stored in multiple local caches.

Computer architecture: a set of disciplines that describes a computer system by specifying its parts

and their relations

Consistency: order of access to different addresses

Control hazard: branching and jumps cannot be executed until the destination address is

known

CPI: cycle per instruction

CPU: central processing unit

Dark Silicon: the gap between how many transistors are on a chip and how many you can use

simultaneously. The simultaneous usage is determined by the power consumption of the chip.

Data hazard: the order of the program is changed which results in data commands being out of

order, if the instructions are dependent - then there is a data hazard.

DDR SDRAM: double data rate synchronous dynamic RAM

Dependency chain: long series of dependent instructions in code

Directory protocols: information about each block state in the caches is stored in a common

directory.

Distributed caches:distributed caching is a form of caching that allows the cache to span multiple

servers so that it can grow in size and in transactional capacity

CS2354 Advanced Computer Architecture

SCE 130 Dept of CSE

DRAM: dynamic random access memory

DSM: distributed shared memory - all processors can access all memory locations

Enterprise class: used for large scale systems that service enterprises

Error: defect that results in failure

Error forecasting: estimate presence, creation, and consequences of errors

Error removal: removing latent errors by verification

Exclusion property: each cache level will not contain any data held by a lower level cache

Explicit ILP: compiler decides which instruction to execute in parallel

Failure: the cause of an error

Fault avoidance: prevent an occurrence of faults by construction

Fault tolerance: prevent faults from becoming failures through redundancy

Faults: actual behavior deviates from specified behavior

FIFO: first in first out

Fine multi-threading: the thread being processed changes every cycle

FLOPS: floating point operations per second

Flynn's Taxonomy: classifications of parallel computer architecture, SISD, SIMD, MISD,

MIMD

FPR: floating point register

FSB: front side bus

CS2354 Advanced Computer Architecture

SCE 131 Dept of CSE

Geometric Mean: the nth root of the product of the numbers

Global miss rate: (the # of L2 misses)/(# of all memory misses)

GPR: general purpose register

Hit latency: time it takes to get data from cache. Includes the time to find the address in the

cache and load it on the data lines

ILP instruction level programming Inclusion property: each level of cache will include all data

from the lower level caches

IPC: instructions per cycle

Iron Law: execution time is the number of executed instructions N (write N in in the ExeTime

for Single-Cycle), times the CPI (write x1), times the clock cycle time (write 2ns) so we get

N2ns (write =N2ns) for single-cycle.

Iron Law: An instruction per program depends on source code, compiler technology, and ISA.

CPI depends upon the ISA and the micro architecture. Time per cycle depends upon the micro

architecture and the base technology.

Iron law of computer performance: relates cycles per instruction, frequency and number of

instructions to computer performance

ISA: instruction set architecture

Itanium architecture: an explicit ILP architecture, six instructions can be executed per clock

cycle

Itanium Processor: Intel family of 64-bit processors that uses the Itanium architecture

LFU: least frequently used

CS2354 Advanced Computer Architecture

SCE 132 Dept of CSE

ll and sc: load link and store conditional, a method using two instructions ll and sc for ensuring

synchronization.

local miss rate: # of L2 misses/ # of L1 misses

Locality principle: things that will happen soon are likely to be similar to things that just

happened.

Loop interchange: used for nested loops. Interchange the order of the iterations of the loop, to

make the accesses of the indexes closer to what is actually the layout in memory

LRU: least recently used

LSQ: load store queue http://www.cs.utah.edu/~manua/sim_doc/simics-micro-architectural-

interface/topic15.html

MCB: memory conflict buffer - "Dynamic Memory Disambiguation Using the Memory Conflict

Buffer", see also "Memory Disambiguation"

Memory dependence prediction: It is a technique employed by high performance out of order

execution microprocessors

MEOSI Protocol: modified-exclusive-owner-shared-invalid protocol, the states of any cached

block.

MESI Protocol: modified-exclusive-shared-invalid protocol, the states of any cached block.

Message Passing: a processor can only access its local memory. To access other memory

locations is must send request/receive messages for data at other memory locations.

Meta-predictor: a predictor that chooses the best branch predictor for each branch.

MIMD: multiple instruction stream, multiple data streams

MISD: multiple instruction streams, single data stream

http://www.cs.utah.edu/~manua/sim_doc/simics-micro-architectural-

CS2354 Advanced Computer Architecture

SCE 133 Dept of CSE

Miss latency: time it takes to get data from main memory. This includes the time it takes to

check that it is not in the cache and then to determine who owns the data, and then send it to the

CPU.

mobo: mother board

Moore's Law: Gordon E. Moore observed the number of transistors on an integrated circuit

board doubles every two years.

MP: multiprocessing

MPKI: Misses per Kilo Instruction

MSI Protocol: modified-shared-invalid protocol, the states of any cached block.

MTPI: message transfer part interface

MTTF: mean time to failure

MTTR: mean time to repair

Multi-level caches: caches with two or more levels, each level larger and slower than the

previous level.

mutex variable: mutually exclusive (mutex), a low level synchronization mechanism. A thread

acquires the variable, then releases it upon completion of the task. During this period no other

thread can acquire the mutex.

NMRU: not most recently used

Non-blocking caches: if there is a miss, the cache services the next request while waiting for

memory

NUMA: non-uniform memory access, also called a distributed shared memory

CS2354 Advanced Computer Architecture

SCE 134 Dept of CSE

OOO: out of order

OS: operating system

PAPT: physically addressed, physically tagged cache - the cache stores the data based on its

physcial address

PC: program counter

PCI: peripheral component interconnect

Pentium Processor: x86 super scalar processor from Intel

Physical registers: registers, FP and GP that are not visible to the programmer

Pipeline burst cache:

Pipelined cache: a pipelined burst cache uses 3 clock cycles to transfer the first data set from a

cache block, then 1 clock cycle to transfer each of the rest. The pipeline and the 'burst'. (3-1-1-1)

PIPT: physically indexed, physically tagged cache.

Power: Power = 1/2C V^2 * f Alpha

Power Architecture: performance optimization with enhanced RISC

Power vs Performance Equation:

Pre-fetch buffer: when getting data from memory, get all the data in the row and store it in a

buffer.

Pre-fetching cache: instructions are fetched from memory before they are needed by the cpu "

Prescott Processor: Based on the Netburst architecture. It has a 31 stage pipeline in the core.

The high penatly paid for mispredictions is supposedly offset with a Rapid Execution Engine. It

CS2354 Advanced Computer Architecture

SCE 135 Dept of CSE

also has a trace execution cache; this store decoded instructions and then reuses them instead of

fetching and decoding again.

PRF: physical register file

Pseudo associative cache: an address is first searched in 1/2 of the cache. If it is not there, then

it is searched in the other half of the cache

RAID: redundant array of independent disks

RAID 0: strips of data are stored on disks - alternating between disks. Each disk supplies a

portion of the data, which usually improves performance. http://en.wikipedia.org/wiki/Raid-

0#RAID_0

RAID 1: the data is replicated on another disk. Each disk contains the data. Which ever disk is

free responds to the read request. The write request is written to one disk and then mirrored to

the other disk(s).

RAID 2 and RAID 3: the data is striped on disks and Hamming codes or parity bits are used for

error detection. RAID 2 and RAID 3 are not used in any current application

RAID 4: Data is striped in large blocks onto disks with a dedicated parity disk. It is used by the

NetApp Company.

RAID 5: Data is striped in large blocks onto disks, but there is no dedicated parity disk. The

parity for each block is stored on one of the data blocks.

RAR: read after read

RAS: return address stack

RAT: register alias table

RAT: *(another RAT in multiprocessing) register allocation table

http://en.wikipedia.org/wiki/Raid-

CS2354 Advanced Computer Architecture

SCE 136 Dept of CSE

RAW: read after write

RDRAM: direct random access memory

Relaxed consistency: some instructions can be performed ooo and still maintain consistency

Reliability: measure of continuous service accomplishment

Reservation stations: function unit buffers

RETO: return from interrupt

RF: register file

RISC Processor: reduced instruction set - simple instructions of the same size. Instructions are

executed in one clock cycle

ROB: re-order buffer

RS: reservation station

RWX: read - write- execute permissions on files

SHARC processor: floating point processors designed for DSP applications

SIMD: singe instruction stream, multiple data streams

Simultaneous multi-threading: instructions from different threads are processed, even in the

same cycle

SISD: single instruction stream, single data stream

SMP: symmetric multiprocessing

SMT: simultaneous multi threading

CS2354 Advanced Computer Architecture

SCE 137 Dept of CSE

Snooping protocols: A broadcast network - caches for each processor watch the bus for

addresses in their cache.

SPARC processor: Scalable Processor Architecture -a RISC instruction set processor

Spatial locality: if we access a memory location, nearby memory locations have a tendency to

be accessed soon.

Speedup: how much faster a modified system is compared to the unmodified system.

SPR: special purpose registers - such as program counter, or status register

SRAM: static random access memory

Structural hazard: the pipeline contains two instructions attempting to access the same

resource.

Super scalar architecture: the processor manages instruction dependencies at run-time.

Executes more than one instruction per clock cycle using pipelines.

Synchronization: "a system is sequentially consistent if the result of any execution is the same

as if the operations of all the processors were executed in some sequential order, and the

operations for each individual processor appear in the order specified by the program." Quote by

Leslie Lamport

Synchronous Message Passing: a processor requests data then waits until the data is received

before continuing.

Tag: the part of the data address that is used to find the data in the cache. This portion of the

address is unique so that it can be distinguished from other lines in the cache.

Temporal locality: if a program accesses a memory location, it tends to access the same location

again very soon.

CS2354 Advanced Computer Architecture

SCE 138 Dept of CSE

TLB: translation look aside buffer - a cache of translated virtual memory to physical memory

addresses. TLB misses are very time consuming

Tomasulo's Algorithm: achieve high performance without using special compilers by using

dynamic scheduling

Tournament predictor: a meta-predictor

Trace caches: sets of instructions are stored in a separate cache. These are instructions that have

been decoded and executed. If there is a branch in the set, only the taken branch instructions are

kept. If there is a misprediction the trace stops.

Trace scheduling: rearranging instructions for faster execution, the common cases are scheduled

first

Tree, tournament, dissemination barriers: types of structures for barriers

UMA: uniform memory access - all memory locations have similar latencies

Vector registers: hold data for vector processing for SIMD

Victim cache: a cache that holds recently evicted blocks. The link is to a victim simulator (don't

use the first trace program, need Firefox, java7).

VIPT: virtually indexed physically tagged

VIPT: virtually indexed physically tagged - the cache receives the virtual address as does the

TLB (in parallel). If a hit, okay, if a miss, the physical address is already translated.

Virtual memory: Methods of allowing a process to access RAM memory independently of

other processes. RAM memory is used by all processes, which means there is probably not

enough RAM for all processes at the same time. The virtual address is used to point to an

address, either RAM or Disk. The program sees it as the same; the TLB translates between

request and the actual memory.

CS2354 Advanced Computer Architecture

SCE 139 Dept of CSE

VIVT: virtually indexed virtually tagged

VIVT: virtually indexed, virtually tagged cache - the cache is virtually addressed by the cpu. On

a cache miss the virtual address must be translated to the physical address

VLIW: very long instruction word

VPN/PPN: Virtual Physical Network, Physical page network

WAR: write after read

WAW: write after write

Way prediction: set associative caches are fast but use a lot of energy. To save energy, predict

the address that will be selected. This reduces the energy wasted searching the entire cache.

Write invalidate: a write to shared data forces invalidation of all other cached copies

Write update: a write to shared data is broadcast to update copies

XEON: x86 processors that can operate together to form dual and quad core systems

CS2354 Advanced Computer Architecture

SCE 140 Dept of CSE

.

CS2354 Advanced Computer Architecture

SCE 141 Dept of CSE

